Project Two
RISC Processor Implementation
ECE 485

Chenqi BAo
Peter CHINETTI

November 6, 2013

Instructor: Professor BORKAR

1 Statement of Problem

This project requires the design and test of a RISC processor in VHDL. It fo-
cuses especially on the datapath design of the processor, and its implementation.
In this groups’ specific case, the required instructions! were:

Name Abrev. | Type
Load Word lw I
Store Word SW I
Add add R
Branch On Equal beq I
NAND nand R
OR Immediate ori I
OR or R
AND Immediate andi I

2 Background

2.1 Instruction Types

The MIPS ISA defines three instruction types, R, I, and J type instructions.
Only R and T type instructions will be covered here, as they are the only in-
structions that are to be implemented for this project.

INAND does not exist in the MIPS ISA, so the ISA was extrapolated to fill out the table

2.1.1 R Type

R type, or register type instructions are the most common form of MIPS in-
structions. In this instruction format, the 32 bits of the instruction are split as
follows:

Bsi_6 | Bas—21 | Bao-16 | Bis—11 | Bio—s | Bs—o
opcode ‘ s rt rd ‘ shamt ‘ funct

In these instructions, the opcode is always 0000002, and the function code
(funct) is used to determine the specific instruction. rs and rt are the two
registers the operation is working on, and rd is the destination register. For
some instructions, a shift amount (shamt) is needed, so it is specified.

2.1.2 1 type

I type, or immediate type instructions are also very common. In this instruction
format, the 32 bits of the instruction are split as follows:

Bsi_2 | Bas—21 | Bao—16 | Bis—o
opcode ‘ s ‘ Tt ‘ immediate

In these instructions, the op code field actually encodes the specific instruction.
rt is the destination register, and rs is the register on which the operation acts.
The immediate field holds the immediate data that serves as the other operand.

2.2 Multicycle Datapath

The microprocessor logically comprises two main components: datapath and
control. The datapath performs the arithmetic operations, and control tells the
datapath, memory and I/O devices what to do according to the wishes of the
instructions of the program [1].

When executing an instruction, the microprocessor steps through five main
stages: Instruction Fetch (IF), Instruction Decode (ID), Execution (EX), Mem-
ory Operations (MEM) and Write Back (WB). Multicycle datapath implemen-
tations takes advantage of the fact that the stages of the operation can share
the same hardware. Rather than use for example, a separate ALU for PC incre-
menting and addition of two registers, the same ALU can have its input switched
from PC incrementation to register reads. This reuse saves on components in
the processor, which can cost less.

Multicycle, however, requires some additional work in the form of multiplexers
to select between inputs and outputs of each stage. Although this is a non-
trivial amount of work, it is still better than duplicating components for each
step.

2.3 VHDL

VHDL is a hardware description language that can be used to prototype dig-
ital systems. According to [2], “VHDL includes facilities for describing logical
structure and function of digital system at a number of levels of abstraction,
from system level down to the gate level.”

3 Implementation

3.1 Design Decisions
3.1.1 Instruction Set

The first design decision was what to use as the format of the instructions
requested. Generally, we used the format specified in the MIPS ISA, but, as
mentioned earlier, NAND is not implemented in the MIPS ISA. Below is a list
of our choices for opcodes and function codes:

OpCode | Function Field | Instruction Operation
100011 000000 lw lw $t3,200($t2)
101011 000000 sw sw $t3,0(3t2)
000000 100000 add add $t1,8t1,$t1
000100 000000 beq beq $t1,$t4,15
000000 100101 or or $t0,$t1,$t0
001100 000000 andi andi $t0,$t0,5
000000 000001 nand nand $t0,$t0,$zero
001101 000000 ori ori $t6,$t6,61680

3.1.2 Memory

Memory was implemented as a simple array of 256 words in this implementation.
Larger memory sizes are possible, but they are unnecessarily complicated for a
simple demonstration such as this.

3.2 Optimization

Little optimization was done on this project other than to not include obviously
useless code. This processor is not pipelined, and as such, it is very much kept
back from the optimization that make modern processors so quick.

3.3 Improvements

This processor has many ways to improve. Out of the large many ways, a few
are most obvious: implement a complete instruction set, add piplineing, and
increase the memory size. Currently the processor exists solely to serve as an
educational demonstration, but could grow to be a complete implementation of
the MIPS ISA given much improvement.

3.4 Failures

Thankfully, we have no failures to report.

3.5 Block Diagram
See figure 1.

3.6 Simulation

The output of the simulations can be found in figures 2-9. The simulation was
done sequentially, in the order of presentation, so the values going into subse-
quent instructions are often dependent on the output of the previous command.

3.7 Code Listing
3.7.1 Datapath

entity MIPS is

Port (
clock :in bit; —~clock record
PCO : out integer; —PC counter (32 bits
)
SET : in bit;
Memval : out bit_vector (31 downto 0); —mem word
addressable
Instrval : out bit_-vector (31 downto 0); —Instruction 32
bits wide
Output : out BIT-VECTOR (31 downto 0); —We are working in

Word size
Portl ,Port2,Port3 ,Port4d : out bit_vector (31 downto 0));
end MIPS;

architecture INSTRUCTION of MIPS is

Data types
signal internal_state: integer;

subtype word is bit_vector (31 downto 0); — 32—bit words
type regfile is array (0 to 31) of word; —— 32 words

7| type ram is array (0 to 255) of word; — toy sized ram for testing
subtype reg_addr is bit_vector (4 downto 0); — 2°5 can store 32

regs
subtype halfword is bit_vector (15 downto 0); — 16—bit entities i.e
Immediate value

subtype byte is bit_vector (7 downto 0); — if we need bytes
constant bvc : bit_-vector (0 to 1) := 7017, —Binary value

int —> bits

3| procedure int2bits (int :in integer; bits :out bit_vector) is

variable temp: integer;
variable result: bit_vector(bits range);

begin
temp := int;
if int < 0 then
temp := —int — 1;

end if;

31 for index in bits 'reverse_range loop
result (index) := bvc(temp rem 2);
33 temp := temp/2 ;
end loop;
35 if int < 0 then
result := not result;
37 result (bits ’left) = ’17;
end if;
39 bits := result;
end int2bits;
41 bits —> unsigned int
function bits2int (bits : in bit_-vector) return integer is
13| variable result : integer := 0;
begin
15 for index in bits 'range loop
result := result * 2 + bit "pos(bits(index));
a7 end loop;

return result;
wlend bits2int;

51 Sign Extend

function sign_ext(imm : in halfword) return word is
53 variable extended : word;
begin
55 if imm(imm’left) = ’1’ then
extended := (31 downto 16 => ’'1’)& imm;
57 else
extended := (31 downto 16 => ’0’)& immy;
59 end if;

return extended;
s1|end sign_ext;
+/-

63| procedure alu_add_subtract (addsel: in bit; result : inout word; a,
nb : in word; V,N : out bit) is — Overflow —> Cout
variable sum : word;
65| variable carry : bit := ’07;
variable b: word;
67| begin

if addsel =’1" then

69 b:=Not nb;

carry = ’17;

71 else b := nb;

end if;

73| for index in sum’reverse_range loop

sum(index) := a(index) xor carry xor b(index);

75| carry := (a(index) and b(index)) or (carry and (a(index) xor b(
index)));

end loop;

77| result := sum;

V := carry ;—= ’'17;

70l end procedure alu-add_subtract;

81
Begin Proc: Process(clock)

s3| variable i: integer:=0; — Execution cycle counter
Begin

91

93

9

~

99

101

103

105

109

119

129

if clock = ’1’ and clock ’event then
if i =5 ORSET = ’1’ then — reset on SET or 5 cycles
i = 0;

end if;

ir=i41;

internal_state <= i;

end if;

end process Proc;

Datapath: Process(internal_state)
variable result ,Instr ,opl,op2,o0p3,maddr : word;

variable opcode, funct : bit_vector (5 downto 0);
variable rs,rt,rd,dstreg ,shamt : reg_addr;
variable state : integer:=0; — ==’cycle’

variable PC : integer:= 0;

variable Imm : halfword;

variable mem_index : byte; — only need 8 bits

variable reg : regfile:= (9 = X70000-0001”, 10 => X”70000-0002” ,12
=> X70000.0002”, others => X”0000.0000");

variable mem : ram := (

0 => X"8D4B_00C8” , — lw $t3,200($t2) [Load $TFFF_FFFF to $t3]

1 = X”AD2B_0000" , — sw $t3,0($t2) [Store $7FFF_FFFF to memory
address 2]

2 => X70129.4820” , — add $t1, $t1, $t1 [doing 1+1 and store the
result in $t1]

3 = X?112C_000B” , — beq $t1,$t4,15 [If $t1=2, go to instr. 15]

15 => X7010B_4025” , — or $t0, $t3, $t0 [or 7FFF.FFFF with 0000
-0000]

16 => X”3108.0005” , — andi $t0,$t0,5 [and TFFF_FFFF with 5]

17 = X70100.0021” , — nand $t0,3%t0,$zero [nand 0000.0005 with
0000.0000 => FFFF_FFF2]

18 => X”35CE_FOF0”, — ori $t0, $zero ,61608 [or 0000_-FOFO0 with

0000.0000 => FFFF_FFFF]
others => X”0000-00007);

variable mem_rw : boolean; — Mem Access
variable mem_r : boolean; — Mem Read
variable i: integer:=0; — Exec cycle counter
variable Dmem : ram := (

202 => X"7FFF_FFFE” |
others => X”0000-00007);
variable V,N,RST : bit;

Begin state:=internal_state;
case state is

when 1 =>
— IF
Instr := mem(PC); PC := PC + 1; —1If PC is an int, incremeting by
1 works
RST := ’0’; — init
mem.rw := false; — init
when 2 =>
— ID

139

141

147

149

161

169

opcode := Instr(31 downto 26);

rs := Instr (25 downto 21);
rt := Instr (20 downto 16);
rd := Instr (15 downto 11);
dstreg := rt;
Imm := Instr (15 downto 0);
shamt := Instr (10 downto 6);
funct := Instr (5 downto 0);
opl := reg(bits2int(rs)); — after filtering to an int, store
op2 := reg(bits2int(rt));
op3 := sign_ext(Imm); — this is the immediate value after being
sign extended
when 3 =>
— EX
case opcode is — switch on opcode

when 7100011”7 => —Iw
alu_add_subtract (’0’,maddr,opl,op3,V,N);
mem._rw :=true;
mem.r :=true;

when 71010117 => —sw
alu_add_subtract (’0’,maddr,opl,op3,V,N);
mem._rw :=true;
mem_r :=false;

when ”7000100” => —beq
alu_add_subtract (’1’,result ,opl,op2,V,N);
if result = X70000.0000” then—if our ALU had a zero output,
take the branch
PC := PC + bits2int (op3);

RST := ’17;

end if;
when 70011017 => —ORI
result := opl OR op3;
when 70011007 => —ANDI
result := opl AND op3;

when ”000000” => —0 op code, therefore R type
dstreg := rd; —R types always have rd as the dest
case funct is
when ”100000” => —Add
alu_add_subtract (’0’, result, opl,op2,V,N);
when 7100001” => —NAND
result :=opl NAND op2;
when ”7100100” => —AND

result := opl AND op2;
when 7100101” = —OR
result := opl OR op2;

when others =>
end case;
when others =>
end case;

when 4 => —MEM

if memrw = true then — These flags got set above when
decoding lw and sw
if memr = true then —set on read

189 result := Dmem(bits2int (maddr));

else — cleared on write
191 Dmem(bits2int (maddr)) := op2; — reg2 written to mem
RST = ’17;
193 end if;
end if;
195
when 5 => — Write—back cycle
197 if RST = 0’ then — if we didn’t write to mem
reg (bits2int (dstreg)) := result; — writeback value to dest.
register
199 end if;
when others =>
201 end case;

203 Output <= result;

Memval <= mem(bits2int (maddr));
205 PCO <= PC;

InstrVal <= Instr;

207 Portl <= opl;

Port2 <= op2;

209 Port3 <= op3;

Port4d <= reg(bits2int (dstreg));
211 end process Datapath;

end INSTRUCTION;

MIPS.vhd

3.7.2 Simulator

ENTITY sim2 IS
3| END sim2;

5| ARCHITECTURE simulation OF sim2 IS
COOMPONENT MIPS

PORT (clock :In bit;

SET : In bit;
9 Output : Out BIT-VECTOR (31 DownTo 0);
PCO : Out INTEGER;
11 Memval : Out BIT_VECTOR (31 DownTo 0);
Instrval : Out BIT-VECTOR (31 DownTo 0);
13 Portl,Port2 ,Port3 ,Port4 : Out BIT_-VECTOR (31 DownTo 0)
)
15 END COMPONENT; ——

~

17| SIGNAL Clock : bit := ’07;

SIGNAL SET : bit := ’0’;

19| SIGNAL Output : BIT_-VECTOR (31 DownTo 0) := 7
00000000000000000000000000000000” ;

SIGNAL PCO0 : INTEGER := 0;

21| SIGNAL Memval : BIT_-VECTOR (31 DownTo 0) := 7
000000000000000000000000000000007 5

SIGNAL Instrval : BIT_VECTOR (31 DownTo 0) := ”
00000000000000000000000000000000” ;

N}

N
~

;| SIGNAL Portl,Port2,Port3,Port4 : BIT-VECTOR (31 DownTo 0) := 7

00000000000000000000000000000000™ ;

Simulation begins

BEGIN

UUT : MIPS

PORT MAP (

clock => clock,
SET => SET,
Instrval => Instrval,
Output => Output,
PCo => PCO,
Memval => Memval,
Portl => Portl,
Port2 => Port2,
Port3 => Port3,
Port4 => Port4

)

PROCESS
BEGIN
CL : LOOP

clock <= ’07;
WAIT FOR 50 ns;
clock <= 17
WAIT FOR 50 ns;
END LOOP CL;
END PROCESS;
PROCESS
BEGIN
WAIT FOR 5000 ns;
END PROCESS;

END simulation;

simulator.vhd

References

[1] David A. Patterson, John L. Hennesy, Computer Organization and Design.
Morgan Kaufmann, Massachusetts, 4th Revised Edition, 2012.

[2] Peter J. Ashden, VHDL Tutorial. Elsevier Science, USA, 2004

N

NVV
b 4
nv
ANy X
n ~ niv
rA__— W
T~
indino <
olo7 pusix3 ubig <
< X lo-Ghisul
el |
flz
N
pesy Y
T eleq ol
ele Bo,
fowspy Qe bed X
eje < ;
a 100195 oM € f n [Li-G1hsul
<
.~
PPV v all4 A
Jeisibay Kowsapy P
7 uolonsu|
<19l-0zlisul
RETEISF A
e eleg | Poy 109183 | B9, _colisu
Ve x 2193 | Bori|e—] [1z-gehsul
Bayo] way
1sabey
y |o
o |
uis
UMW e IN ambay
L
g |V
donv
jonu0)

Od

Figure 1: Block Diagram

10

[T

B |

[[

TTITTTITITTITFITITTO,

B | 5UOSSTET

“TITTTTTITITI pHog/zws) € 7
*** 0000000000000 cod/Tws/ €+
TITTETTITITN ZHod/zws) € 7
“TITTLTTITITL THod/Tws @ 7
*** 0000000000000 Ennsu/zws/ € F
*TOT00TOTTOTOT PAWRKYZWIS/ @ F

857 0Dd/zwisf ’
CCTTTTTITTTTTINNT indinofzwis/ 4+

0 13sfzwis/ 4

1 popyzus/ 4

Yneyaq - aneqy [EE

Figure 2: 1w $t3,200($t2); Loading 7FFF FFFF

11

o K B 3

SU 0S5EET

R ETEEERELEE

T

Flodfzuns/

" '0000000000000

£14og/zuns/

IR EITEEEREE

T TILEIITETELEE

T1404/Zunsf

0000000000000

[BAgsULfFUISS

’.
’.
ZHog/zus] € |
’.
’ !

"TOTOOTOTTOTOT

AWz, € |

S5

0Ddfzws/ 4

T ELLELTEEEEEE

ndino/zwis/ €+

1357w/ 4

pop/zws/ @

Wney3q - 3neq [EE

Figure 3: sw $t3,0(8t2); Storing 7FFF FFFF

12

SU 09SEET

SRR R E
0000000000000
R ETELEEREETLE
SEREEEEEERTELLE
0000000000000
“TOTOO0TOTTOTOT
S5E
CHITTEITETIEET
]

T

$t1 initialized to 1

Figure 4: add $t1,$t1,$t1;

13

SUDRSEET

R TEEERERTE
* 0000000000000
SEEELEEREEEERLE
S EEEETTEEVEEET
" 0000000000000
" TOTOOTOTTOTOT

B5€
R ER TR

=2

$t1

Figure 5: beq $t1,$t4,15; $t/ initialized to 2,

14

W o o R |

i00000000000000000000000000000
EU T2ZZ § T2I04/ZWIE/:WTE

SUDRSEET

AR
0000000000000
SRR ETELEEEE
STEIERELTEEITEEE
" '0000000000000
“TOTOOTOTTOTOT
B5E
“TTITETIELTELL
0

T

F1odfzus/
£Hodfzunsf
THod/zusf
THOd zunsf
[BALSUTfFUIS/
[EAWR Z US|
0Ddfzus/
Indyng/zuwis/
13s/zwisf
¥pop/zuis/

\IH
\IH
\IH
\IH
i
=

.
-
r
"

7FFF FFFF, $t0 = 0

Figure 6: or $t0,$t3,$t0; $t3

15

- I [

TTTTTETTTITITRITITTTITTITTTITEITITTO

5U DeSELT

SRR EE T
0000000000000
SEEEEEEEERTELLE
SEEEETE LT
0000000000000
"“TOTOOTOTTOTOT
LT
SEEEEEEEE R ERTE
]

T

Hney

20

BN _m [

TFFF FFFF

Figure 7: andi $t0,$t0,5; $t0

16

| puvsam v | pynzus Wl [anem [EE

N Do K I | K

TTTTTITITTTIITT

SU DeSELT

SRRV ELTE
0000000000000
SR T
CIECEIETELEEEE
0000000000000
“TOTOOTOTTOTOT
T

TR LR T ELET
]

T

=5

Figure 8: nand $t0,$t0,$zero; $t0

17

SUDeSELT

SRR R E
0000000000000
R ETELEEREETLE
SEREEEEEERTELLE
0000000000000
“TOTOO0TOTTOTOT
S5E
CHITTEITETIEET
]

T

=0

Figure 9: ori $t6,$t6,61680; $t6

18

