Index

CD information is listed by chapter and section number followed by page ranges (3.10:6-9). Page references preceded by a single letter refer to appendixes.

1-bit ALU, C-26-29
adder, C-27
CarryOut, C-28
illustrated, C-29
logical unit for AND/OR, C-27
for most significant bit, C-33
performing AND, OR, and addition, C-31, C-33
See also Arithmetic logic unit (ALU)
32-bit ALU, C-29-38
from 31 copies of 1-bit ALU, C-34
with 32 1-bit ALUs, C-30
defining in Verilog, C-35-38
illustrated, C-36
ripple carry adder, C-29
tailoring to MIPS, C-31-35
See also Arithmetic logic unit (ALU)
32-bit immediate operands, 128-29
7090/7094 hardware, CD3.10:6

A

Absolute references, 142
Abstractions
defined, 20
hardware/software interface, 20-21
principle, 21
Accumulator architectures, CD2.20:1
Accumulators, CD2.20:1
Acronyms, 8

Addition, 224-29
binary, 224-25
floating-point, 250-54, 259, B-73-74
instructions, B-51
operands, 225
significands, 250
speed, 229
See also Arithmetic
Address-control lines, D-26
Addresses
32-bit immediates, 128-36
base, 83
byte, 84
defined, 82
memory, 91
virtual, 493-95, 514
Addressing
32-bit immediates, 128-36
base, 133
displacement, 133
intermediate, 132, 133
in jumps and branches, 129-32
MIPS modes, 132-33
PC-relative, 130, 133
pseudodirect, 133
register, 132, 133
x86 modes, 168,170
Addressing modes, B-45-47
desktop architectures, E-6
embedded architectures, E-6
Address select logic, D-24, D-25
Address space, 492, 496
extending, 545
flat, 545
ID (ASID), 510
inadequate, CD5.13:5
shared, 639-40
single physical, 638
unmapped, 514
virtual, 510
Address translation
AMD Opteron X4, 540
defined, 493
fast, 502-4
Intel Nehalem, 540
TLB for, 502-4
Add unsigned instruction, 226
Advanced Technology Attachment (ATA) disks, 577, 613, 614
AGP, A-9
Algol-60, CD2.20:6-7
Aliasing, 508
Alignment restriction, 84
All-pairs N-body algorithm, A-65
Alpha architecture
bit count instructions, E-29
defined, 527
floating-point instructions, E-28
instructions, E-27-29
no divide, E-28
PAL code, E-28
unaligned load-store, E-28
VAX floating-point formats, E-29
ALU control, 316-18
bits, 317
logic, D-6
mapping to gates, $\mathrm{D}-4-7$
truth tables, D-5
See also Arithmetic logic unit (ALU)
ALU control block, 320
defined, D-4
generating ALU control bits, D-6
ALUOp, 316, D-6
bits, 317, 318
control signal, 320
AMD64, 167, CD2.20:5

Amdahl's law, 477, 635
corollary, 52
defined, 51
fallacy, 684
AMD Opteron X4 (Barcelona), 20, 44-50, 300
address translation, 540
architectural registers, 404
base versus fully optimized performance, 683
caches, 541
characteristics, 677
CPI, miss rates, and DRAM accesses, 542
defined, 677
illustrated, 676
LBMHD performance, 682
memory hierarchies, 540-43
microarchitecture, 404, 405
miss penalty reduction techniques, 541-43
pipeline, 404-6
pipeline illustration, 406
roofline model, 678
shared L3 cache, 543
SPEC CPU benchmark, 48-49
SPEC power benchmark, 49-50
SpMV performance, 681
TLB hardware, 540
American Standard Code for Information Interchange. See ASCII
AND gates, C-12, D-7
AND operation, 103-4, B-52, C-6
Annual failure rate (AFR), 573, 613
Antidependence, 397
Antifuse, C-78
Apple computer, CD1.10:6-7
Application binary interface (ABI), 21
Application programming interfaces (APIs)
defined, A-4
graphics, A-14
Architectural registers, 404
Arithmetic, 222-83
addition, 224-29
division, 236-42
floating point, 242-70
for multimedia, 227-28
multiplication, 230-36
subtraction, 224-29
Arithmetic instructions
desktop RISC, E-11
embedded RISC, E-14
logical, 308
MIPS, B-51-57
operands, 80
See also Instructions
Arithmetic intensity, 668
Arithmetic logic unit (ALU)
1-bit, C-26-29
32-bit, C-29-38
before forwarding, 368
branch datapath, 312
hardware, 226
memory-reference instruction use, 301
for register values, 308
R-format operations, 310
signed-immediate input, 371
See also ALU control; Control units
ARM instructions, 161-65
12-bit immediate field, 164
addressing modes, 161-63
block loads and stores, 165
brief history, CD2.20:4
calculations, 161-63
compare and conditional branch, 163-64
condition field, 383
data transfer, 162
features, 164-65
formats, 164
logical, 165
MIPS similarities, 162
register-register, 162
unique, E-36-37
ARPANET, CD6.14:7
Arrays
logic elements, C-18-19
multiple dimension, 266
pointers versus, 157-61
procedures for setting to zero, 158
ASCII
binary numbers versus, 123
character representation, 122
defined, 122
symbols, 126
Assembler directives, B-5
Assemblers, 140-42, B-10-17
conditional code assembly, B-17
defined, 11, B-4
function, 141, B-10
macros, B-4, B-15-17
microcode, D-30
number acceptance, 141
object file, 141-42
pseudoinstructions, B-17
relocation information, B-13, B-14
speed, B-13
symbol table, B-12
Assembly language
defined, 11, 139
drawbacks, B-9-10
floating-point, 260
high-level languages versus, B-12
illustrated, 12
MIPS, 78, 98-99, B-45-80
production of, B-8-9
programs, 139
translating into machine language, 98-99
when to use, B-7-9
Asserted signals, 305, C-4
Associativity
in caches, 482-83
degree, increasing, 481, 518
floating-point addition, testing, 270-71
increasing, 486-87
set, tag size versus, 486-87
Asynchronous interconnect, 583
Atomic compare and swap, 139
Atomic exchange, 137
Atomic fetch-and-increment, 139
Atomic memory operation, A-21
Attribute interpolation, A-43-44
Availability, 573
Average memory access time (AMAT), 478
calculating, 478-79
defined, 478

B

Backpatching, B-13
Backplane bus, 582
Backups, 615-16
Bandwidth
bisection, 661
external to DRAM, 474
I/O, 618

L2 cache, 675
memory, 471, 472
network, 661
Barrier synchronization, $\mathrm{A}-18$
defined, A-20
for thread communication, A-34
Base addressing, 83, 133
Base registers, 83
Basic block, 108-9
Benchmarks
defined, 48
I/O, 596-98
Linpack, 664, CD3.10:3
multicores, 657-84
multiprocessor, 664-66
NAS parallel, 666
parallel, 665
PARSEC suite, 666
SPEC CPU, 48-49
SPEC power, 49-50
SPECrate, 664
SPLASH/SPLASH 2, 664-66
Stream, 675
Biased notation, 94, 247
Big-endian byte order, 84, B-43
Binary digits. See Bits
Binary numbers
ASCII versus, 123
conversion to decimal numbers, 90
conversion to hexadecimal numbers, 96
defined, 87
Bisection bandwidth, 661
Bit error rate (BER), CD6.11:9
Bit-interleaved parity, 602
Bit maps, 17
defined, 16, 87
goal, 17
storing, 17
Bits
ALUOp, 317, 318
defined, 11
dirty, 501
done, 588
error, 588
guard, 266-67
patterns, 269
reference, 499
rounding, 268
sign, 90
state, D-8
sticky, 268
valid, 458
Blocking assignment, C-24
Block-interleaved parity, 602-3
Blocks
combinational, C-4
defined, 454
finding, 519-20
flexible placement, 479-84
least recently used (LRU), 485
loads/stores, 165
locating in cache, 484-85
miss rate and, 465
multiword, mapping addresses to, 463-64
placement locations, 518-19
placement strategies, 481
replacement selection, 485
replacement strategies, 520-21
spatial locality exploitation, 464
state, C-4
valid data, 458
Boolean algebra, C-6
Bounds check shortcut, 110
Branch datapath
ALU, 312
operations, 311
Branch delay slots
defined, 381
scheduling, 382
Branch equal, 377
Branches
addressing in, 129-32
compiler creation, 107
condition, 313
decision, moving up, 377
delayed, 111, 313, 343, 377-79, 381, 382
ending, 108
execution in ID stage, 378
pipelined, 378
target address, 378
unconditional, 106
See also Conditional branches
Branch hazards. See Control hazards
Branch history tables. See Branch prediction, buffers
Branch instructions, B-59-63
jump instruction versus, 328
list of, B-60-63
pipeline impact, 376

Branch not taken
assumption, 377
defined, 311
Branch-on-equal instruction, 326
Branch prediction
buffers, 380, 381
as control hazard solution, 342
defined, 341
dynamic, 341, 342, 380-83
static, 393
Branch predictors
accuracy, 381
correlation, 383
information from, 382
tournament, 383
Branch taken
cost reduction, 377
defined, 311
Branch target
addresses, 310
buffers, 383
Bubbles, 374
Bubble Sort, 156
Bus-based coherent multiprocessors, CD7.14:6
Buses, 584, 585
backplane, 582
defined, C-19
processor-memory, 582
synchronous, 583
Bytes
addressing, 84
order, 84, B-43

C

Cache-aware instructions, 547
Cache coherence, 534-38
coherence, 534
consistency, 535
enforcement schemes, 536
implementation techniques,
CD5.9:10-11
migration, 536
problem, 534, 535, 538
protocol example, CD5.9:11-15
protocols, 536
replication, 536
snooping protocol, 536-537-538
snoopy, CD5.9:16
state diagram, CD5.9:15

Cache coherency protocol, CD5.9:11-15
finite-state transition diagram,
CD5.9:12, CD5.9:14
functioning, CD5.9:12
mechanism, CD5.9:13
state diagram, CD5.9:15
states, CD5.9:11-12
write-back cache, CD5.9:12
Cache controllers, 538
cache coherency protocol, CD5.9:11-15
coherent cache implementation techniques, CD5.9:10-11
implementing, CD5.9:1-16
snoopy cache coherence, CD5.9:16
SystemVerilog, CD5.9:1-9
Cache hits, 508
Cache misses
block replacement on, 520-21
capacity, 523
compulsory, 523
conflict, 523
defined, 465
direct-mapped cache, 482
fully associative cache, 483
handling, 465-66
memory-stall clock cycles, 475
reducing with flexible block placement, 479-84
set-associative cache, 482-83
steps, 466
in write-through cache, 467
Cache performance, 475-92
calculating, 477
hit time and, 478
impact on processor performance, 476-77
Caches, 457-75
accessing, 459-65
associativity in, 482-83
bits in, 463
bits needed for, 460
contents illustration, 461
defined, 20, 457
direct-mapped, 457, 459, 463, 479
disk controller, 578
empty, 460
flushing, 595
FSM for controlling, 529-39
fully associative, 479
GPU, A-38
inconsistent, 466
index, 460
Intrinsity FastMATH example, 468-70
locating blocks in, 484-85
locations, 458
memory system design, 471-74
multilevel, 475, 487-91
nonblocking, 541
physically addressed, 508
physically indexed, 507
physically tagged, 507
primary, 488, 489, 492
secondary, 488, 489, 492
set-associative, 479
simulating, 543-44
size, 462
split, 470
summary, 474-75
tag field, 460
tags, CD5.9:10, CD5.9:11
virtually addressed, 508
virtually indexed, 508
virtually tagged, 508
virtual memory and TLB integration, 504-8
write-back, 467, 468, 521, 522
writes, 466-68
write-through, 467, 468, 521, 522
See also Blocks
Callee, 113, 116
Callee-saved register, B-23
Caller, 113
Caller-saved register, B-23
Capabilities, CD5.13:7
Capacity misses, 523
Carry lookahead, C-38-47
4-bit ALUs using, C-45
adder, C-39
fast, with first level of abstraction, C-39-40
fast, with "infinite" hardware, C-38-39
fast, with second level of abstraction, C-40-46
plumbing analogy, C-42, C-43
ripple carry speed versus, C-46
summary, C-46-47
Carry save adders, 235
Cause register, 590
defined, 386
fields, B-34, B-35
illustrated, 591
CDC 6600, CD1.10:6, CD4.15:2
Central processor unit (CPU)
classic performance equation, 35-37
coprocessor 0, B-33-34
defined, 19
execution time, 30, 31, 32
performance, 30-32
system, time, 30
time, 475
time measurements, 31
user, time, 30
See also Processors
Cg pixel shader program, A-15-17
Channel controllers, 593
Characters
ASCII representation, 122
in Java, 126-27
Chips. See Integrated circuits (ICs)
$\mathrm{C}++$ language, $\mathrm{CD} 2.15: 26, \mathrm{CD} 2.20: 7$
C language
assignment, compiling into MIPS, 79-80
compiling, 161, CD2.15:1-2
compiling assignment with registers, 81-82
compiling while loops in, 107-8
sort algorithms, 157
translation hierarchy, 140
translation to MIPS assembly language, 79
variables, 118
Classes
defined, CD2.15:14
packages, CD2.15:20
Clock cycles
defined, 31
memory-stall, 475, 476
number of registers and, 81
worst-case delay and, 330
Clock cycles per instruction (CPI), 33-34, 341
one level of caching, 488
two levels of caching, 488
Clocking methodology, 305-7, C-48
defined, 305
edge-triggered, 305, 306, C-48, C-73
level-sensitive, C-74, C-75-76
for predictability, 305

Clock rate
defined, 31
frequency switched as function of, 40
power and, 39
Clocks, C-48-50
edge, C-48, C-50
in edge-triggered design, C-73
skew, C-74
specification, C-57
synchronous system, C-48-49
Clusters, CD7.14:7-8
defined, 632, 641, CD7.14:7
drawbacks, 642
isolation, 644
organization, 631
overhead in division of memory, 642
scientific computing on, CD7.14:7
Cm*, CD7.14:3-4
C.mmp, CD7.14:3

Coarse-grained multithreading, 645-46
Cobol, CD2.20:6
Code generation, CD2.15:12
Code motion, CD2.15:6
Combinational blocks, C-4
Combinational control units, D-4-8
Combinational elements, 304
Combinational logic, 306, C-3, C-9-20
arrays, C-18-19
decoders, C-9
defined, C-5
don't cares, C-17-18
multiplexors, C-10
ROMs, C-14-16
two-level, C-11-14
Verilog, C-23-26
Commands, to I/O devices, 588-89
Commercial computer development, CD1.10:3-9
Commit units
buffer, 399
defined, 399
in update control, 402
Common case fast, 177
Common subexpression elimination, CD2.15:5
Communication, 24-25
overhead, reducing, 43
thread, A-34
Compact code, CD2.20:3
Compact disks (CDs), 23, 24

Comparison instructions, B-57-59
floating-point, B-74-75
list of, B-57-59
Comparisons, 108-9
constant operands in, 109
signed versus unsigned, 110
Compilers, 139
branch creation, 107
brief history, CD2.20:8
conservative, CD2.15:5-6
defined, 11
front end, CD2.15:2
function, 13, 139, B-5-6
high-level optimizations, CD2.15:3-4
ILP exploitation, CD4.15:4-5
Just In Time (JIT), 148
machine language production, $\mathrm{B}-8-9$, B-10
optimization, 160, CD2.20:8
speculation, 392-93
structure, CD2.15:1
Compiling
C assignment statements, 79-80
C language, 107-8, 161, CD2.15:1-2
floating-point programs, 262-65
if-then-else, 106
in Java, CD2.15:18-19
procedures, 114, 117-18
recursive procedures, 117-18
while loops, 107-8
Compressed sparse row (CSR) matrix, A-55, A-56
Compulsory misses, 523
Computers
application classes, 5-7
applications, 4
arithmetic for, 222-83
characteristics, CD1.10:12
commercial development, CD1.10:3-9
component organization, 14
components, 14, 223, 569
design measure, 55
desktop, 5, 15
embedded, 5-7, B-7
first, CD1.10:1-3
in information revolution, 4
instruction representation, 94-101
laptop, 18
performance measurement, CD1.10:9
principles, 100
rack mount, 606
servers, 5
Compute Unified Device Architecture. See CUDA programming environment
Conditional branches
ARM, 163
changing program counter with, 383
compiling if-then-else into, 106
defined, 105
desktop RISC, E-16
embedded RISC, E-16
implementation, 112
in loops, 130
PA-RISC, E-34, E-35
PC-relative addressing, 130
RISC, E-10-16
SPARC, E-10-12
Conditional move instructions, 383
Condition field, 383
Conflict misses, 523
Constant-manipulating instructions, B-57
Constant memory, A-40
Constant operands, 86-87
in comparisons, 109
frequent occurrence, 87
Content Addressable Memory (CAM), 485
Context switch, 510
Control
ALU, 316-18
challenge, 384
finishing, 327
forwarding, 366
FSM, D-8-21
implementation, optimizing, D-27-28
for jump instruction, 329
mapping to hardware, D-2-32
memory, D-26
organizing, to reduce logic, D-31-32
pipelined, 359-63
Control flow graphs, CD2.15:8-9
defined, CD2.15:8
illustrated examples, CD2.15:8, CD2.15:9

Control functions
ALU, mapping to gates, D-4-7
defining, 321
PLA, implementation, D-7, D-20-21
ROM, encoding, D-18-19
for single-cycle implementation, 327
Control hazards, 339-43, 375-84
branch delay reduction, 377-79
branch not taken assumption, 377
branch prediction as solution, 342
defined, 339, 376
delayed decision approach, 343
dynamic branch prediction, 380-83
logic implementation in Verilog,
CD4.12:7-9
pipeline stalls as solution, 340
pipeline summary, 383-84
simplicity, 376
solutions, 340
static multiple-issue processors and, 394
Control lines
asserted, 323
in datapath, 320
execution/address calculation, 361
final three stages, 361
instruction decode/register file read, 361
instruction fetch, 361
memory access, 362
setting of, 321, 323
values, 360
write-back, 362
Control signals
ALUOp, 320
defined, 306
effect of, 321
multi-bit, 322
pipelined datapaths with, 359
truth tables, D-14
Control units, 303
address select logic, D-24, D-25
combinational, implementing, D-4-8
with explicit counter, D-23
illustrated, 322
logic equations, D-11
main, designing, 318-26
as microcode, D-28

MIPS, D-10
next-state outputs, D-10, D-12-13
output, 316-17, D-10
See also Arithmetic logic unit (ALU)
Conversion instructions, B-75-76
Cooperative thread arrays (CTAs), A-30
Coprocessors
coprocessor 0, B-33-34
defined, 266
move instructions, B-71-72
Copy back. See Write-back
Core MIPS instruction set, 282
abstract view, 302
desktop RISC, E-9-11
implementation, 300-303
implementation illustration, 304
overview, 301-3
subset, 300-301
See also MIPS
Cores
defined, 41
number per chip, 42
Correcting code, 602
Correlation predictor, 383
Cosmic Cube, CD7.14:6
Count register, B-34
Cray computers, CD3.10:4, CD3.10:5
Critical word first, 465
Crossbar networks, 662
CTSS (Compatible Time-Sharing System), CD5.13:8
CUDA programming environment, 659, A-5, CDA.11:5
barrier synchronization, A-18, A-34
defined, A-5
development, A-17, A-18
hierarchy of thread groups, A-18
kernels, A-19, A-24
key abstractions, A-18
paradigm, A-19-23
parallel plus-scan template, A-61
per-block shared memory, A-58
plus-reduction implementation, A-63
programs, A-6, A-24
scalable parallel programming with, A-17-23
SDK, 172
shared memories, A-18
threads, A-36

D

Databases
brief history, CD6.14:4
Integrated Data Store (IDS), CD6.14:4
relational, CD6.14:5
Datacenters, 5
Data flow analysis, CD2.15:8
Data hazards, 336-39, 363-75
defined, 336
forwarding, 336, 363-75
load-use, 338, 377
stalls and, 371-74
See also Hazards
Data layout directives, B-14
Data-level parallelism, 649
Data movement instructions, B-70-73
Data parallel problem decomposition, A-17, A-18
Datapath elements
defined, 307
sharing, 313
Datapaths
branch, 311, 312
building, 307-16
control signal truth tables, D-14
control unit, 322
defined, 19
design, 307
exception handling, 387
for fetching instructions, 309
for hazard resolution via forwarding, 370
for jump instruction, 329
for memory instructions, 314
for MIPS architecture, 315
in operation for branch-on-equal instruction, 326
in operation for load instruction, 325
in operation for R-type
instruction, 324
operation of, 321-26
pipelined, 344-58
for R-type instructions, 314, 323
single, creating, 313-16
single-cycle, 345
static two-issue, 395
Data race, 137
Data rate, 596
Data segment, B-13
Data selectors, 303

Data structure compression, 680
Data transfer instructions
defined, 82
load, 83
offset, 83
store, 85
See also Instructions
Deasserted signals, 305, C-4
Debugging information, B-13
DEC disk drive, CD6.14:3
Decimal numbers
binary number conversion to, 90
defined, 87
Decision-making instructions, 105-12
Decoders, C-9
defined, C-9
two-level, C-65
Decoding machine language, 134
DEC PDP-8, CD1.10:5
Deep Web, CD6.14:8
Delayed branches, 111
as control hazard solution, 343
defined, 313
embedded RISCs and, E-23
for five-stage pipelines, 382
reducing, 377-79
scheduling limitations, 381
See also Branches
Delayed decision, 343
DeMorgan's theorems, C-11
Denormalized numbers, 270
Dependences
bubble insertion and, 374
detection, 365
name, 397
between pipeline registers, 367
between pipeline registers and ALU inputs, 366
sequence, 363
Design
compromises and, 177
datapath, 307
digital, 406-7
I/O system, 598-99
logic, 303-7, C-1-79
main control unit, 318-26
memory hierarchy, challenges, 525
pipelining instruction sets, 335
Desktop and server RISCs
addressing modes, E-6
architecture summary, E-4
arithmetic/logical instructions, E-11
conditional branches, E-16
constant extension summary, E-9
control instructions, E-11
conventions equivalent to MIPS core, E-12
data transfer instructions, E-10
features added to, E-45
floating-point instructions, E-12
instruction formats, E-7
multimedia extensions, E-16-18
multimedia support, E-18
types of, E-3
See also Reduced instruction set computer (RISC) architectures
Desktop computers
defined, 5
illustrated, 15
D flip-flops, C-51, C-53
Dicing, 46
Dies, 46
Digital design pipeline, 406-7
Digital signal-processing (DSP) extensions, E-19
Digital video disks (DVDs), 23, 24
DIMMs (dual inline memory modules), CD5.13:4
Direct3D, A-13
Direct-mapped caches
address portions, 484
choice of, 520
defined, 457, 479
illustrated, 459
memory block location, 480
misses, 482
single comparator, 485
total number of bits, 463
See also Caches
Direct memory access (DMA)
defined, 592
multiple devices, 593
setup, 593
transfers, 593, 595
Dirty bit, 501
Dirty pages, 501
Disk controllers
caches, 578
defined, 576
time, 576
Disk read time, 577

Disk storage, 575-79
characteristics, 579
densities, 577
history, CD6.14:1-4
interfaces, 577-78
as nonvolatile, 575
rotational latency, 576
sectors, 575
seek time, 575
tracks, 575
transfer time, 576
Displacement addressing, 133
Divide algorithm, 239
Dividend, 237
Division, 236-42
algorithm, 238
dividend, 237
divisor, 237
faster, 241
floating-point, 259, B-76
hardware, 237-39
hardware, improved version, 240
instructions, B-52-53
in MIPS, 241-42
operands, 237
quotient, 237
remainder, 237
signed, 239-41
SRT, 241
See also Arithmetic
Divisor, 237
D latches, C-51, C-52
Done bit, 588
Don't cares, C-17-18
example, C-17-18
term, 318
Double Data Rate RAMs (DDRRAMs), 473, C-65
Double precision
defined, 245
FMA, A-45-46
GPU, A-45-46, A-74
representation, 249
See also Single precision
Double words, 168
Dynamically linked libraries (DLLs), 145-46
defined, 146
lazy procedure linkage version, 146, 147

Dynamic branch prediction, 380-83
branch prediction buffer, 380
defined, 380
loops and, 380
See also Control hazards
Dynamic hardware predictors, 341
Dynamic multiple-issue processors, 392, 397-400
pipeline scheduling, 398-400
superscalar, 397
See also Multiple issue
Dynamic pipeline scheduling, 399-400
commit unit, 399
concept, 400
defined, 398
hardware-based speculation, 400
primary units, 399
reorder buffer, 399
reservation station, 399
Dynamic random access memory
(DRAM), 453, 471, C-63-65
bandwidth external to, 474
cost, 23
defined, 18-19, C-63
DIMM, CD5.13:4
Double Date Rate (DDR), 473
early board, CD5.13:4
GPU, A-37-38
growth of capacity, 27
history, CD5.13:3-4
pass transistor, C-63
SIMM, CD5.13:4, CD5.13:5
single-transistor, C-64
size, 474
speed, 23
synchronous (SDRAM), 473, C-60, C-65
two-level decoder, C-65

E

Early restart, 465
Edge-triggered clocking methodology, $305,306, \mathrm{C}-48, \mathrm{C}-73$
advantage, C-49
clocks, C-73
defined, C-48
drawbacks, C-74
illustrated, C-50
rising edge/falling edge, C-48

EDSAC (Electronic Delay Storage Automatic Calculator), CD1.10:2, CD5.13:1-2
Eispack, CD3.10:3
Electrically erasable programmable read-only memory (EEPROM), 581
Elements
combinational, 304
datapath, 307, 313
memory, C-50-58
state, $305,306,308, \mathrm{C}-48, \mathrm{C}-50$
Embedded computers
application requirements, 7
defined, B-7
design, 6
growth, CD1.10:11-12
Embedded Microprocessor Benchmark Consortium (EEMBC), CD1.10:11-12
Embedded RISCs
addressing modes, E-6
architecture summary, E-4
arithmetic/logical instructions, E-14
conditional branches, E-16
constant extension summary, E-9
control instructions, E-15
data transfer instructions, E-13
delayed branch and, E-23
DSP extensions, E-19
general purpose registers, E-5
instruction conventions, E-15
instruction formats, E-8
multiply-accumulate approaches, E-19
types of, E-4
See also Reduced instruction set computer (RISC) architectures
Encoding
defined, D-31
floating-point instruction, 261
MIPS instruction, 98,135, B-49
ROM control function, D-18-19
ROM logic function, C-15
x86 instruction, 171-72
ENIAC (Electronic Numerical Integrator and Calculator), CD1.10:1, CD1.10:2, CD1.10:3, CD5.13:1
EPIC, CD4.15:4
Error bit, 588
Error correction, C-65-67
Error detection, 602, C-66

Ethernet, 24, 25, CD6.14:8
defined, CD6.11:5
multiple, CD6.11:6
success, CD6.11:5
Exception enable, 512
Exception handlers, B-36-38
defined, B-35
return from, B-38
Exception program counters (EPCs), 385
address capture, 390
copying, 227
defined, 227, 386
in restart determination, 385
transferring, 229
Exceptions, 384-91, B-35-36
association, 390
datapath with controls for handling, 387
defined, 227, 385
detecting, 385
event types and, 385
imprecise, 390
instructions, B-80
interrupts versus, 384-85
in MIPS architecture, 385-86
overflow, 387
PC, 509, 511
pipelined computer example, 388
in pipelined implementation, 386-91
precise, 390
reasons for, 385-86
result due to overflow in add instruction, 389
saving/restoring stage on, 515
Exclusive OR (XOR) instructions, B-57
Executable files, B-4
defined, 142
linker production, B-19
Execute/address calculation
control line, 361
load instruction, 350
store instruction, 352
Execute or address calculation stage, 350, 352
Execution time
CPU, 30, 31, 32
pipelining and, 344
as valid performance measure, 54
Explicit counters, D-23, D-26

Exponents, 244-45

EX stage
load instructions, 350
overflow exception detection, 387
store instructions, 353
External labels, B-10

F

Facilities, B-14-17
Failures
disk, rates, 613-14
mean time between (MTBF), 573
mean time to (MTTF), 573, 574, 613, 630
reasons for, 574
synchronizer, C-77
Fallacies
add immediate unsigned, 276
Amdahl's law, 684
assembly language for performance, 174-75
commercial binary compatibility importance, 175
defined, 51
disk failure rates, 613-14
GPUs, A-72-74, A-75
low utilization uses little power, 52
MTTF, 613
peak performance, 684-85
pipelining, 407
powerful instructions mean higher performance, 174
right shift, 275-76
See also Pitfalls
False sharing, 537
Fast carry
with first level of abstraction, C-39-40
with "infinite" hardware, C-38-39
with second level of abstraction, C-40-46
Fast Fourier Transforms (FFT), A-53
Fiber Distributed Data Interface (FDDI), CD6.14:8
Fibre Channel Arbitrated Loop
(FC-AL), CD6.11:11
Field programmable devices (FPDs), C-78
Field programmable gate arrays (FPGAs), C-78

Fields
Cause register, B-34, B-35
defined, 95
format, D-31
MIPS, 96-97
names, 97
Status register, B-34, B-35
Filebench, 597
Files, register, 308, 314, C-50, C-54-56
File server benchmark (SPECFS), 597
Fine-grained multithreading, 645, 647
Finite-state machines (FSMs), 529-34, C-67-72
control, D-8-22
controllers, 532
defined, 531, C-67
implementation, 531, C-70
Mealy, 532
Moore, 532
for multicycle control, D-9
next-state function, 531, C-67
output function, C-67, C-69
for simple cache controller, 533
state assignment, C-70
state register implementation, C-71
style of, 532
synchronous, C-67
SystemVerilog, CD5.9:6-9
traffic light example, C-68-70
Fixed-function graphics pipelines, CDA.11:1
Flash-based removable memory cards, 23
Flash memory, 580-82
brief history, CD6.14:4
characteristics, 23, 580
defined, 22, 580
as EEPROM, 581
NAND, CD6.14:4
NOR, 581, CD6.14:4
wear leveling, 581
Flat address space, 545
Flip-flops
defined, C-51
D flip-flops, C-51, C-53
Floating point, 242-70
assembly language, 260
backward step, CD3.10:3-4
binary to decimal conversion, 249
branch, 259
challenges, 280
defined, 244
diversity versus portability, CD3.10:2-3
division, 259
first dispute, CD3.10:1-2
form, 245
fused multiply add, 268
guard digits, 266-67
history, CD3.10:1-10
IEEE 754 standard, 246, 247
immediate calculations, 266
instruction encoding, 261
machine language, 260
MIPS instruction frequency for, 282
MIPS instructions, 259-61
operands, 260
operands variation in x86, 274
overflow, 245
packed format, 274
precision, 271
procedure with two-dimensional matrices, 263-65
programs, compiling, 262-65
registers, 265
representation, 244-50
rounding, 266-67
sign and magnitude, 245
SSE2 architecture, 274-75
subtraction, 259
underflow, 245
units, 267
in x86, 272-74
Floating-point addition, 250-54
arithmetic unit block diagram, 254
associativity, testing, 270-71
binary, 251, 253
illustrated, 252
instructions, 259, B-73-74
steps, 250-51
Floating-point arithmetic (GPUs), A-41-46
basic, A-42
double precision, A-45-46, A-74
performance, A-44
specialized, A-42-44
supported formats, A-42
texture operations, A-44
Floating-point instructions, B-73-80
absolute value, B-73
addition, B-73-74
comparison, B-74-75

Floating-point instructions (continued)
conversion, B-75-76
desktop RISC, E-12
division, B-76
load, B-76-77
move, B-77-78
multiplication, B-78
negation, B-78-79
SPARC, E-31
square root, B-79
store, B-79
subtraction, B-79-80
truncation, B-80
Floating-point multiplication, 255-59
binary, 256-57
illustrated, 258
instructions, 259
significands, 255
steps, 255-56
Floating vectors, CD3.10:2
Flow-sensitive information, CD2.15:14
Flushing instructions, 377, 378
defined, 377
exceptions and, 390
For loops, 157
inner, CD2.15:25
SIMD and, CD7.14:2
Formal parameters, B-16
Format fields, D-31
Fortran, CD2.20:6
Forwarding, 363-75
ALU before, 368
control, 366
datapath for hazard resolution, 370
defined, 336
functioning, 364-65
graphical representation, 337
illustrations, CD4.12:25-30
multiple results and, 339
multiplexors, 370
pipeline registers before, 368
with two instructions, 336-37
Verilog implementation, CD4.12:3-5
Forward references, B-11
Fractions, 244, 245, 246
Frame buffer, 17
Frame pointers, 119
Front end, CD2.15:2

Fully associative caches
block replacement strategies, 521
choice of, 520
defined, 479
memory block location, 480
misses, 483
See also Caches
Fully connected networks, 661, 662
Function code, 97
Fused-multiply-add (FMA) operation, 268, A-45-46

G

Game consoles, A-9
Gates, C-3, C-8
AND, C-12, D-7
defined, C-8
delays, C-46
mapping ALU control function to, D-4-7
NAND, C-8
NOR, C-8, C-50
Gateways, CD6.11:6
General Purpose GPUs (GPGPUs), 656, A-5, CDA.11:3
General-purpose registers
architectures, CD2.20:2-3
embedded RISCs, E-5
Generate
defined, C-40
example, C-44
super, C-41
Gigabytes, 23
Global common subexpression elimination, CD2.15:5
Global memory, A-21, A-39
Global miss rates, 489
Global optimization, CD2.15:4-6
code, CD2.15:6
defined, CD2.15:4
implementing, CD2.15:7-10
Global pointers, 118
GPU computing
defined, A-5
visual applications, A-6-7
See also Graphics processing units (GPUs)
GPU system architectures, A-7-12
graphics logical pipeline, A-10
heterogeneous, A-7-9
implications for, A-24
interfaces and drivers, A-9
unified, A-10-12
Graph coloring, CD2.15:11
Graphics displays
computer hardware support, 17 LCD, 16
Graphics logical pipeline, A-10
Graphics processing units (GPUs), 654-60
as accelerators, 654
attribute interpolation, A-43-44
computing, CDA.11:4
defined, 44, 634, A-3
driver software, 655
evolution, A-5, CDA.11:2
fallacies and pitfalls, A-72-75
floating-point arithmetic, A-17, A-41-46, A-74
future trends, CDA.11:5
GeForce 8-series generation, A-5
general computation, A-73-74
General Purpose (GPGPUs), 656, A-5, CDA.11:3
graphics mode, A-6
graphics trends, A-4
history, A-3-4
logical graphics pipeline, A-13-14
main memory, 655
mapping applications to, A-55-72
memory, 656
multilevel caches and, 655
N-body applications, A-65-72
NVIDIA architecture, 656-59
parallelism, 655, A-76
parallel memory system, A-36-41
performance doubling, A-4
perspective, 659-60
programmable real-time, CDA.11:2-3
programming, A-12-24
programming interfaces to, 654, A-17
real-time graphics, A-13
scalable, CDA.11:4-5
summary, A-76
See also GPU computing
Graphics shader programs, A-14-15
Gresham's Law, 283, CD3.10:1
Grids, A-19
Guard digits
defined, 266
rounding with, 267

H

Half precision, A-42
Halfwords, 126
Handlers
defined, 513
TLB miss, 514
Handshaking protocol, 584
Hard disks
access times, 23
defined, 22
diameters, 23
illustrated, 22
read-write head, 22
Hardware
as hierarchical layer, 10
language of, 11-13
operations, 77-80
supporting procedures in, 112-22
synthesis, C-21
translating microprograms to, D-28-32 virtualizable, 527
Hardware-based speculation, 400
Hardware description languages
defined, C-20
using, C-20-26
VHDL, C-20-21
See also Verilog
Hardware multithreading, 645-48
coarse-grained, 645-46
defined, 645
fine-grained, 645, 647
options, 646
simultaneous, 646-48
Harvard architecture, CD1.10:3
Hazard detection units, 372
functions, 373
pipeline connections for, 373
Hazards, 335-43
control, 339-43, 375-84
data, 336-39, 363-75
defined, 335
forwarding and, 371
structural, 335-36, 352
See also Pipelining
Heap
allocating space on, 120-22
defined, 120
Heterogeneous systems, A-4-5
architecture, A-7-9
defined, A-3

Hexadecimal numbers, 95-96
binary number conversion to, 96 defined, 95
High-level languages, 11-13, B-6 benefits, 13
computer architectures, CD2.20:4
defined, 12
importance, 12
High-level optimizations, CD2.15:3-4
Hit rate, 454
Hit time
cache performance and, 478
defined, 455
Hit under miss, 541
Hold time, C-54
Horizontal microcode, D-32
Hot-swapping, 605
Hubs, CD6.11:6, CD6.11:7
Hybrid hard disks, 581

IBM 360/85, CD5.13:6
IBM 370, CD6.14:2
IBM 701, CD1.10:4
IBM 7030, CD4.15:1
IBM ALOG, CD3.10:6
IBM Blue Genie, CD7.14:8-9
IBM Cell QS20
base versus fully optimized performance, 683
characteristics, 677
defined, 679
illustrated, 676
LBMHD performance, 682
roofline model, 678
SpMV performance, 681
IBM Personal Computer, CD1.10:7, CD2.20:5
IBM System/360 computers, CD1.10:5, CD3.10:4, CD3.10:5, CD5.13:5
IBM z/VM, CD5.13:7
ID stage
branch execution in, 378
load instructions, 349
store instruction in, 349
IEEE 754 floating-point standard, 246, 247, CD3.10:7-9
first chips, CD3.10:7-9
in GPU arithmetic, A-42-43
implementation, CD3.10:9
rounding modes, 268
today, CD3.10:9
See also Floating point
IEEE 802.11, CD6.11:8-10
with base stations, CD6.11:9
cellular telephony versus, CD6.11:10
defined, CD6.11:8
Wired Equivalent privacy, CD6.11:10
IEEE 802.3, CD6.14:8
I-format, 97
If statements, 130
If-then-else, 106
Immediate instructions, 86
Imprecise interrupts, 390, CD4.15:3
Index-out-of-bounds check, 110
Induction variable elimination, CD2.15:6
Inheritance, CD2.15:14
In-order commit, 400
Input devices, 15
Inputs, 318
Instances, CD2.15:14
Instruction count, 35, 36
Instruction decode/register file read stage
control line, 361
load instruction, 348
store instruction, 352
Instruction execution illustrations, CD4.12:16-30
clock cycles 1 and 2, CD4.12:20
clock cycles 3 and 4, CD4.12:21
clock cycles 5 and 6, CD4.12:22
clock cycles 7 and 8, CD4.12:23
clock cycle 9, CD4.12:24
examples, CD4.12:19-24
forwarding, CD4.12:25, CD4.12:26-27
no hazard, CD4.12:16-19
pipelines with stalls and forwarding, CD4.12:25, CD4.12:28-30
Instruction fetch stage
control line, 361
load instruction, 348
store instruction, 352
Instruction formats
ARM, 164
defined, 95
desktop/server RISC architectures, E-7
embedded RISC architectures, E-8
I-type, 97
J-type, 129

Instruction formats (continued)
jump instruction, 328
MIPS, 164
R-type, 97, 319
x86, 173
Instruction latency, 408
Instruction-level parallelism (ILP)
compiler exploitation, CD4.15:4-5
defined, 41, 391
exploitation, increasing, 402
See also Parallelism
Instruction mix, 37, CD1.10:9
Instructions, 74-221
add immediate, 86
addition, 226, B-51
Alpha, E-27-29
arithmetic-logical, 308, B-51-57
ARM, 161-65, E-36-37
assembly, 80
basic block, 108-9
branch, B-59-63
cache-aware, 547
comparison, B-57-59
conditional branch, 105
conditional move, 383
constant-manipulating, B-57
conversion, B-75-76
core, 282
data movement, B-70-73
data transfer, 82
decision-making, 105-12
defined, 11, 76
desktop RISC conventions, E-12
division, B-52-53
as electronic signals, 94
embedded RISC conventions, E-15
encoding, 98
exception and interrupt, B-80
exclusive OR, B-57
fetching, 309
fields, 95
floating-point, 259-61, B-73-80
floating-point (x86), 273
flushing, 377, 378, 390
immediate, 86
introduction to, 76-77
I/O, 589
jump, 111, 113, B-63-64
left-to-right flow, 346
load, 83, B-66-68
load linked, 138
logical operations, 102-5
M32R, E-40
memory access, A-33-34
memory-reference, 301
MIPS-16, E-40-42
MIPS-64, E-25-27
multiplication, 235, B-53-54
negation, B-54
nop, 373
PA-RISC, E-34-36
performance, 33-34
pipeline sequence, 372
PowerPC, E-12-13, E-32-34
PTX, A-31, A-32
remainder, $\mathrm{B}-55$
representation in computer, 94-101
restartable, 513
resuming, 516
R-type, 308-9
shift, B-55-56
SPARC, E-29-32
store, 85, B-68-70
store conditional, 138-39
subtraction, 226, B-56-57
SuperH, E-39-40
thread, A-30-31
Thumb, E-38
trap, B-64-66
vector, 652
as words, 76
x86, 165-74
See also Arithmetic instructions;
MIPS; Operands
Instruction set architecture
ARM, 161-65
branch address calculation, 310
defined, 21, 54
history, 179
maintaining, 54
protection and, 528-29
thread, A-31-34
virtual machine support, 527-28
Instruction sets
ARM, 383
design for pipelining, 335
MIPS, 77, 178, 279
MIPS-32, 281
NVIDIA GeForce 8800, A-49
Pseudo MIPS, 281
x86 growth, 176
Instructions per clock cycle (IPC), 391

Integrated circuits (ICs)
cost, 46
defined, 26
manufacturing process, 45
very large-scale (VLSIs), 26
See also specific chips
Integrated Data Store (IDS), CD6.14:4
Intel IA-64 architecture, CD4.15:4
Intel Nehalem
address translation for, 540
caches, 541
die processor photo, 539
memory hierarchies, 540-43
miss penalty reduction techniques, 541-43
TLB hardware for, 540
Intel Paragon, CD7.14:7
Intel Threading Building Blocks, A-60
Intel Xeon e5345
base versus fully optimized performance, 683
characteristics, 677
defined, 677
illustrated, 677
LBMHD performance, 682
roofline model, 678
SpMV performance, 681
Interference graphs, CD2.15:11
Interleaving, 472, 474
Intermediate addressing, 132, 133
Internetworking, CD6.11:1-3
Interprocedural analysis, CD2.15:13
Interrupt-driven I/O, 589
Interrupt enable, 512
Interrupt handlers, B-33
Interrupt priority levels (IPLs), 590-92
defined, 591
higher, 592
Interrupts
defined, 227, 385
event types and, 385
exceptions versus, 384-85
imprecise, 390, CD4.15:3
instructions, B-80
precise, 390
vectored, 386
Intrinsity FastMATH processor, 468-70
caches, 469
data miss rates, 470, 484
defined, 468
read processing, 506
TLB, 504
write-through processing, 506
Inverted page tables, 500
I/O, B-38-40, CD6.14:1-8
bandwidth, 618
chip sets, 586
coherence problem for, 595
controllers, 593, 615
future directions, 618
instructions, 589
interrupt-driven, 589
memory-mapped, 588, B-38
parallelism and, 599-606
performance, 572
performance measures, 596-98
processor communication, 589-90
rate, 596, 610, 611
requests, 572,618
standards, 584
system performance impact, 599-600
systems, 570
transactions, 583
I/O benchmarks, 596-97
file system, 597-98
transaction processing, 596-97
Web, 597-98
See also Benchmarks
I/O devices
characteristics, 571
commands to, 588-89
diversity, 571
expandability, 572
illustrated, 570
interfacing, 586-95
maximum number, 617
multiple paths to, 618
priorities, 590-92
reads/writes to, 572
transfers, 585, 592-93
I/O interconnects
function, 583
of x86 processors, 584-86
I/O systems
design, 598-99
design example, 609-11
history, 618
operating system responsibilities and, 587-88
organization, 585
peak transfer rate, 617
performance, 618
power evaluation, 611-12
weakest link, 598
Issue packets, 393

J

Java
bytecode, 147
bytecode architecture, CD2.15:16
characters in, 126-27
compiling in, CD2.15:18-19
goals, 146
interpreting, 148, 161, CD2.15:14-15
keywords, CD2.15:20
method invocation in, CD2.15:19-20
pointers, CD2.15:25
primitive types, CD2.15:25
programs, starting, 146-48
reference types, CD2.15:25
sort algorithms, 157
strings in, 126-27
translation hierarchy, 148
while loop compilation in, CD2.15:17-18
Java Virtual Machine (JVM), 147, CD2.15:15
Job-level parallelism, 632
J-type instruction format, 129
Jump instructions, 312
branch instruction versus, 328
control and datapath for, 329
implementing, 328
instruction format, 328
list of, B-63-64
MIPS-64, E-26
Just In Time (JIT) compilers, 148, 687

K

Karnaugh maps, C-18
Kernel mode, 509
Kernels
CUDA, A-19, A-24
defined, A-19

L

Labels
global, B-10, B-11
local, B-11
LAPACK, 271
Laptop computers, 18
Large-scale multiprocessors, CD7.14:6-7, CD7.14:8-9
Latches
defined, C-51
D latch, C-51, C-52
Latency
constraints, 598
instruction, 408
memory, A-74-75
pipeline, 344
rotational, 576
use, 395, 396
Lattice Boltzmann Magneto-
Hydrodynamics (LBMHD), 680-82
defined, 680
optimizations, 681-82
performance, 682
Leaf procedures
defined, 116
example, 126
See also Procedures
Least recently used (LRU)
as block replacement strategy, 521
defined, 485
pages, 499
Least significant bits, C-32
defined, 88
SPARC, E-31
Left-to-right instruction flow, 346
Level-sensitive clocking, C-74, C-75-76
defined, C-74
two-phase, C-75
Lines. See Blocks
Linkers, 142-45, B-18-19
defined, 142, B-4
executable files, 142, B-19
function illustration, B-19
steps, 142
using, 143-45
Linking object files, 143-45
Linpack, 664, CD3.10:3
Liquid crystal displays (LCDs), 16

LISP, SPARC support, E-30
Little-endian byte order, B-43
Live range, CD2.15:10
Livermore Loops, CD1.10:10
Load balancing, 637-38
Loaders, 145
Loading, B-19-20
Load instructions
access, A-41
base register, 319
block, 165
compiling with, 85
datapath in operation for, 325
defined, 83
details, B-66-68
EX stage, 350
floating-point, B-76-77
halfword unsigned, 126
ID stage, 349
IF stage, 349
linked, 138, 139
list of, B-66-68
load byte unsigned, 124
load half, 126
load upper immediate, 128, 129
MEM stage, 351
pipelined datapath in, 355
signed, 124
unit for implementing, 311
unsigned, 124
WB stage, 351
See also Store instructions
Load-store architectures, CD2.20:2
Load-use data hazard, 338, 377
Load-use stalls, 377
Load word, 83, 85
Local area networks (LANs), CD6.11:5-8, CD6.14:8
defined, 25
Ethernet, CD6.11:5-6
hubs, CD6.11:6, CD6.11:7
routers, CD6.11:6
switches, CD6.11:6-7
wireless, CD6.11:8-11
See also Networks
Locality
principle, 452, 453
spatial, 452-53, 456
temporal, 452, 453, 456
Local labels, B-11
Local memory, A-21, A-40

Local miss rates, 489
Local optimization, CD2.15:4-6
defined, CD2.15:4
implementing, CD2.15:7
See also Optimization
Locks, 639
Lock synchronization, 137
Logic
address select, D-24, D-25
ALU control, D-6
combinational, 306, C-5, C-9-20
components, 305
control unit equations, D-11
design, 303-7, C-1-79
equations, $\mathrm{C}-7$
minimization, C-18
programmable array (PAL), C-78
sequential, C-5, C-56-58
two-level, C-11-14
Logical operations, 102-5
AND, 103-4, B-52
ARM, 165
defined, 102-5
desktop RISC, E-11
embedded RISC, E-14
MIPS, B-51-57
NOR, 104-5, B-54
NOT, 104, B-55
OR, 104, B-55
shifts, 102
Long-haul networks, CD6.11:5
Long instruction word (LIW), CD4.15:4
Lookup tables (LUTs), C-79
Loops, 107-8
conditional branches in, 130
defined, 107
for, 157, CD2.15:25
prediction and, 380
test, 158, 159
while, compiling, 107-8
Loop unrolling
defined, 397, CD2.15:3
for multiple-issue pipelines, 397
register renaming and, 397

M

M32R, E-15, E-40
Machine code, 95
Machine instructions, 95

Machine language
branch offset in, 131-32
decoding, 134
defined, 11, 95, B-3
floating-point, 260
illustrated, 12
MIPS, 100
SRAM, 20
translating MIPS assembly language into, 98-99
Macros
defined, B-4
example, B-15-17
use of, B-15
Magnetic disks. See Hard disks
Magnetic tapes, 615-16
defined, 23
use history, 615-16
Main memory, 493
defined, 21
page tables, 501
physical addresses, 492, 493
See also Memory
Mapping applications, A-55-72
Mark computers, CD1.10:3
Mealy machine, 532, C-68, C-71, C-72
Mean time between failures (MTBF), 573
Mean time to failure (MTTF), 573, 574
fallacies, 613
ratings, 600
Mean time to repair (MTTR), 573, 574
Memory
addresses, 91
affinity, 680, 681
atomic, A-21
bandwidth, 471, 472
cache, 20, 457-92
CAM, 485
constant, A-40
control, D-26
defined, 17
DRAM, 18-19, 453, 471, 473, C-63-65
efficiency, 642
flash, 22, 23, 580-82, CD6.14:4
global, A-21, A-39
GPU, 656
instructions, datapath for, 314
layout, B-21
local, A-21, A-40
main, 21
nonvolatile, 21
operands, 82-83
parallel system, A-36-41
read-only (ROM), C-14-16
SDRAM, 473
secondary, 22
shared, A-21, A-39-40
spaces, A-39
SRAM, C-58-62
stalls, 478
technologies for building, 25-26
texture, $\mathrm{A}-40$
usage, B-20-22
virtual, 492-517
volatile, 21
Memory access instructions, A-33-34
Memory access stage
control line, 362
load instruction, 350
store instruction, 352
Memory consistency model, 538
Memory elements, C-50-58
clocked, C-51
D flip-flop, C-51, C-53
D latch, C-52
DRAMs, C-63-67
flip-flop, C-51
hold time, C-54
latch, C-51
setup time, C-53, C-54
SRAMs, C-58-62
unclocked, C-51
Memory hierarchies
block (or line), 454
cache performance, 475-92
caches, 457-75
common framework, 518-25
defined, 453
design challenges, 525
development, CD5.13:5-7
exploiting, 450-548
inclusion, 542
level pairs, 455
multiple levels, 454
overall operation of, 507
parallelism and, 534-38
pitfalls, 543-47
program execution time and, 491
quantitative design parameters, 518
reliance on, 455
structure, 454
structure diagram, 456
variance, 491
virtual memory, 492-517
Memory-mapped I/O
defined, 588
use of, B-38
Memory-stall clock cycles, 475, 476
Message passing
defined, 641
multiprocessors, 641-45
Metastability, C-76
Methods
defined, CD2.15:14
invoking in Java, CD2.15:19-20
static, B-20
Microarchitectures
AMD Opteron X4 (Barcelona), 405
defined, 404
Microcode
assembler, D-30
control unit as, D-28
defined, D-27
dispatch ROMs, D-30-31
field translation, D-29
horizontal, D-32
vertical, D-32
Microinstructions, D-31
Microprocessors
design shift, 633
multicore, 8, 41, 632
Microprograms
as abstract control representation, D-30
translating to hardware, D-28-32
Migration, 536
Million instructions per second (MIPS), 53
Minterms
defined, C-12, D-20
in PLA implementation, D-20
MIP-map, A-44
MIPS, 78, 98-99, B-45-80
addressing for 32-bit immediates, 128-36
addressing modes, B-45-47
arithmetic core, 280
arithmetic instructions, 77, B-51-57
ARM similarities, 162
assembler directive support, B-47-49
assembler syntax, B-47-49
assembly instruction, mapping, 95
branch instructions, B-59-63
comparison instructions, B-57-59
compiling C assignment statements into, 79
compiling complex C assignment into, 79-80
constant-manipulating instructions, B-57
control registers, 511
control unit, D-10
CPU, B-46
divide in, 241-42
exceptions in, 385-86
fields, 96-97
floating-point instructions, 259-61
FPU, B-46
instruction classes, 179
instruction encoding, 98, 135, B-49
instruction formats, 136, 164, B-49-51
instruction set, 77, 178, 279
jump instructions, B-63-66
logical instructions, B-51-57
machine language, 100
memory addresses, 84
memory allocation for program and data, 120
multiply in, 235
opcode map, B-50
operands, 78
Pseudo, 280, 281
register conventions, 121
static multiple issue with, 394-97
MIPS-16, E-15-16
16-bit instruction set, E-41-42
immediate fields, E-41
instructions, E-40-42
MIPS core instruction changes, E-42
PC-relative addressing, E-41
MIPS-32 instruction set, 281
MIPS-64 instructions, E-25-27
conditional procedure call instructions, E-27
constant shift amount, E-25
jump/call not PC-relative, E-26
move to/from control registers, E-26
nonaligned data transfers, E-25
NOR, E-25
parallel single precision floating-point operations, E-27
reciprocal and reciprocal square root, E-27
SYSCALL, E-25
TLB instructions, E-26-27

MIPS core
architecture, 243
arithmetic/logical instructions not in, E-21, E-23
common extensions to, E-20-25
control instructions not in, E-21
data transfer instructions not in, E-20, E-22
floating-point instructions not in, E-22
instruction set, 282, 300-303, E-9-10
Mirroring, 602
Miss penalty
defined, 455
determination, 464
multilevel caches, reducing, 487-91
reduction techniques, 541-43
Miss rates
block size versus, 465
data cache, 519
defined, 454
global, 489
improvement, 464
Intrinsity FastMATH processor, 470
local, 489
miss sources, 524
split cache, 470
Miss under miss, 541
Modules, B-4
Moore machines, 532, C-68, C-71, C-72
Moore's law, 654, A-72-73
Most significant bit
1-bit ALU for, C-33
defined, 88
Motherboards, 17
Mouse anatomy, 16
Move instructions, B-70-73
coprocessor, B-71-72
details, B-70-73
floating-point, B-77-78
MS-DOS, CD5.13:10-11
Multicore multiprocessors, 41
benchmarking with roofline model, 675-84
characteristics, 677
defined, 8,632
system organization, 676
two sockets, 676
MULTICS (Multiplexed Information and Computing Service), CD5.13:8-9

Multilevel caches
complications, 489
defined, 475,489
miss penalty, reducing, 487-91
performance of, 487-88
summary, 491-92
See also Caches
Multimedia arithmetic, 227-28
Multimedia extensions
desktop/server RISCs, E-16-18
vector versus, 653
Multiple-clock-cycle pipeline diagrams, 356
defined, 356
five instructions, 357
illustrated, 357
Multiple dimension arrays, 266
Multiple instruction multiple data (MIMD), 659
defined, 648
first multiprocessor, CD7.14:3
Multiple instruction single data (MISD), 649
Multiple issue, 391-400
code scheduling, 396
defined, 391
dynamic, 392, 397-400
issue packets, 393
loop unrolling and, 397
processors, 391, 392
static, 392, 393-97
throughput and, 401
Multiplexors, C-10
controls, 531
in datapath, 320
defined, 302
forwarding, control values, 370
selector control, 314
two-input, C-10
Multiplicand, 230
Multiplication, 230-36
fast, hardware, 236
faster, 235
first algorithm, 232
floating-point, 255-58, B-78
hardware, 231-33
instructions, 235, B-53-54
in MIPS, 235
multiplicand, 230
multiplier, 230
operands, 230
product, 230
sequential version, 231-33
signed, 234
See also Arithmetic
Multiplier, 230
Multiply-add (MAD), A-42
Multiply algorithm, 234
Multiprocessors
benchmarks, 664-66
bus-based coherent, CD7.14:6
defined, 632
historical perspective, 688
large-scale, CD7.14:6-7, CD7.14:8-9
message-passing, 641-45
multithreaded architecture,
A-26-27, A-35-36
organization, 631, 641
for performance, 686-87
shared-memory, 633, 638-40
software, 632
TFLOPS, CD7.14:5
UMA, 639
Multistage networks, 662
Multithreaded multiprocessor architecture, A-25-36
conclusion, A-36
ISA, A-31-34
massive multithreading, A-25-26
multiprocessor, A-26-27
multiprocessor comparison, A-35-36
SIMT, A-27-30
special function units (SFUs), A-35
streaming processor (SP), A-34
thread instructions, A-30-31
threads/thread blocks management, A-30
Multithreading, A-25-26
coarse-grained, 645-46
defined, 634
fine-grained, 645, 647
hardware, 645-48
simultaneous (SMT), 646-48
Must-information, CD2.15:14
Mutual exclusion, 137

N

Name dependence, 397
NAND flash memory, CD6.14:4
NAND gates, C-8

NAS (NASA Advanced Supercomputing), 666
N-body
all-pairs algorithm, A-65
GPU simulation, A-71
mathematics, A-65-67
multiple threads per body, A-68-69
optimization, A-67
performance comparison, A-69-70
results, A-70-72
shared memory use, A-67-68
Negation instructions, B-54, B-78-79
Negation shortcut, 91-92
Nested procedures, 116-18
compiling recursive procedure showing, 117-18
defined, 116
Network of Workstations, CD7.14:7-8
Networks, 24-25, 612-13, CD6.11:1-11
advantages, 24
bandwidth, 661
characteristics, CD6.11:1
crossbar, 662
fully connected, 661, 662
local area (LANs), 25, CD6.11:5-8, CD6.14:8
long-haul, CD6.11:5
multistage, 662
OSI model layers, CD6.11:2
peer-to-peer, CD6.11:2
performance, CD6.11:7-8
protocol families/suites, CD6.11:1
switched, CD6.11:5
wide area (WANs), 25, CD6.14:7-8
Network topologies, 660-63
implementing, 662-63
multistage, 663
Newton's iteration, 266
Next state
nonsequential, D-24
sequential, D-23
Next-state function, 531, C-67
defined, 531
implementing, with sequencer, D-22-28
Next-state outputs, D-10, D-12-13
example, D-12-13
implementation, D-12
logic equations, D-12-13
truth tables, D-15
Nonblocking assignment, C-24

Nonblocking caches, 403, 541
Nonuniform memory access
(NUMA), 639
Nonvolatile memory, 21
Nonvolatile storage, 575
Nops, 373
NOR flash memory, 581, CD6.14:4
NOR gates, C-8
cross-coupled, C-50
D latch implemented with, C-52
NOR operation, 104-5, B-54, E-25
North bridge, 584
NOT operation, 104, B-55, C-6
No write allocation, 467
Numbers
binary, 87
computer versus real-world, 269
decimal, 87, 90
denormalized, 270
hexadecimal, 95-96
signed, 87-94
unsigned, 87-94
NVIDIA GeForce 3, CDA.11:1
NVIDIA GeForce 8800, A-46-55, CDA.11:3
all-pairs N-body algorithm, A-71
dense linear algebra computations, A-51-53
FFT performance, A-53
instruction set, A-49
performance, A-51
rasterization, $\mathrm{A}-50$
ROP, A-50-51
scalability, A-51
sorting performance, A-54-55
special function approximation statistics, A-43
special function unit (SFU), A-50
streaming multiprocessor (SM), A-48-49
streaming processor, A-49-50
streaming processor array (SPA), A-46
texture/processor cluster (TPC), A-47-48
NVIDIA GPU architecture, 656-59

0

Object files, 141, B-4
debugging information, 142
defined, B-10
format, B-13-14
header, 141, B-13
linking, 143-45
relocation information, 141
static data segment, 141
symbol table, 141, 142
text segment, 141
Object-oriented languages
brief history, CD2.20:7
defined, 161, CD2.15:14
See also Java
One's complement, 94, C-29
Opcodes
control line setting and, 323
defined, 97, 319
OpenGL, A-13
OpenMP (Open MultiProcessing), 666
Open Systems Interconnect (OSI) model, CD6.11:2

Operands, 80-87
32-bit immediate, 128-29
adding, 225
arithmetic instructions, 80
compiling assignment when in memory, 83
constant, 86-87
division, 237
floating-point, 260
memory, 82-83
MIPS, 78
multiplication, 230
shifting, 164
See also Instructions
Operating systems
brief history, CD5.13:8-11
defined, 10
disk access scheduling pitfall, 616-17
encapsulation, 21
Operations
atomic, implementing, 138
hardware, 77-80
logical, 102-5
x86 integer, 168-71
Optical disks
defined, 23
technology, 24
Optimization
class explanation, CD2.15:13
compiler, 160
control implementation, D-27-28
global, CD2.15:4-6

Optimization (continued)
high-level, CD2.15:3
local, CD2.15:4-6, CD2.15:7
manual, 160
OR operation, 104, B-55, C-6
Out-of-order execution
defined, 400
performance complexity, 489
processors, 403
Output devices, 15
Overflow
defined, 89, 245
detection, 226
exceptions, 387
floating point, 245
occurrence, 90
saturation and, 227-28
subtraction, 226

P

Packed floating-point format, 274
Page faults, 498
for data access, 513
defined, 493, 494
handling, 495, 510-16
virtual address causing, 514
See also Virtual memory
Pages
defined, 493
dirty, 501
finding, 496
LRU, 499
offset, 494
physical number, 494
placing, 496
size, 495
virtual number, 494
See also Virtual memory
Page tables, 520
defined, 496
illustrated, 499
indexing, 497
inverted, 500
levels, 500-501
main memory, 501
register, 497
storage reduction techniques, 500-501
updating, 496
VMM, 529

Parallelism, 41, 391-403
data-level, 649
debates, CD7.14:4-6
GPUs and, 655, A-76
instruction-level, 41, 391, 402
I/O and, 599-606
job-level, 632
memory hierarchies and, 534-38
multicore and, 648
multiple issue, 391-400
multithreading and, 648
performance benefits, 43
process-level, 632
subword, E-17
task, A-24
thread, A-22
Parallel memory system, A-36-41
caches, A-38
constant memory, A-40
DRAM considerations, A-37-38
global memory, A-39
load/store access, A-41
local memory, A-40
memory spaces, A-39
MMU, A-38-39
ROP, A-41
shared memory, A-39-40
surfaces, A-41
texture memory, A-40
See also Graphics processing units (GPUs)
Parallel-processing programs, 634-38
creation difficulty, 634-38
defined, 632
for message passing, 642-43
for shared address space, 639-40
use of, 686
Parallel reduction, A-62
Parallel scan, A-60-63
CUDA template, A-61
defined, A-60
inclusive, A-60
tree-based, A-62
Parallel software, 633
Paravirtualization, 547
PA-RISC, E-14, E-17
branch vectored, E-35
conditional branches, E-34, E-35
debug instructions, E-36
decimal operations, E-35
extract and deposit, E-35
instructions, E-34-36
load and clear instructions, E-36
multiply/add and multiply/
subtract, E-36
nullification, E-34
nullifying branch option, E-25
store bytes short, E-36
synthesized multiply and divide, E-34-35
Parity, 602
bit-interleaved, 602
block-interleaved, 602-04
code, C-65
disk, 603
distributed block-interleaved, 603-4
PARSEC (Princeton Application
Repository for Shared-Memory
Computers), 666
Pass transistor, C-63
PCI-Express (PCIe), A-8
PC-relative addressing, 130, 133
Peak floating-point performance, 668
Peak transfer rate, 617
Peer-to-peer networks, CD6.11:2
Pentium bug morality play, 276-79
Performance, 26-38
assessing, 26-27
classic CPU equation, 35-37
components, 37
CPU, 30-32
defining, 27-30
equation, using, 34
improving, 32-33
instruction, 33-34
measuring, 30-32, CD1.10:9
networks, CD6.11:7-8
program, 38
ratio, 30
relative, 29
response time, 28, 29
sorting, A-54-55
throughput, 28
time measurement, 30
Petabytes, 5
Physical addresses, 493
defined, 492
mapping to, 494
space, 638, 640
Physically addressed caches, 508
Physical memory. See Main memory
Pipelined branches, 378

Pipelined control, 359-63
control lines, 360, 361
overview illustration, 375
specifying, 361
See also Control
Pipelined datapaths, 344-58
with connected control signals, 362
with control signals, 359
corrected, 355
illustrated, 347
in load instruction stages, 355
Pipelined dependencies, 364
Pipeline registers
before forwarding, 368
dependences, 366, 367
forwarding unit selection, 371
Pipelines
AMD Opteron X4 (Barcelona), 404-6
branch instruction impact, 376
effectiveness, improving, CD4.15:3-4
execute and address calculation stage, 350, 352
five-stage, 333, 348-50, 358
fixed-function graphics, CDA.11:1
graphic representation, 337, 356-58
instruction decode and register file read stage, 348,352
instruction fetch stage, 348, 352
instructions sequence, 372
latency, 344
memory access stage, 350,352
multiple-clock-cycle diagrams, 356
performance bottlenecks, 402
single-clock-cycle diagrams, 356
stages, 333
static two-issue, 394
write-back stage, 350, 352
Pipeline stalls, 338-39
avoiding with code reordering, 338-39
data hazards and, 371-74
defined, 338
insertion, 374
load-use, 377
as solution to control hazards, 340
Pipelining, 330-44
advanced, 402-3
benefits, 331
control hazards, 339-43
data hazards, 336-39
defined, 330
exceptions and, 386-91
execution time and, 344
fallacies, 407
hazards, 335-43
instruction set design for, 335
laundry analogy, 331
overview, 330-44
paradox, 331
performance improvement, 335
pitfall, 407-8
simultaneous executing instructions, 344
speed-up formula, 333
structural hazards, 335-36, 352
summary, 343
throughput and, 344
Pitfalls
address space extension, 545
associativity, 545
defined, 51
GPUs, A-74-75
ignoring memory system behavior, 544
magnetic tape backups, 615-16
memory hierarchies, 543-47
moving functions to I/O processor, 615
network feature provision, 614-15
operating system disk accesses, 616-17
out-of-order processor
evaluation, 545
peak transfer rate performance, 617
performance equation subset, 52-53
pipelining, 407-8
pointer to automatic variables, 175
sequential word addresses, 175
simulating cache, 543-44
software development with
multiprocessors, 685
VMM implementation, 545-47
See also Fallacies
Pixel shader example, A-15-17
Pizza boxes, 607
Pointers
arrays versus, 157-61
frame, 119
global, 118
incrementing, 159
Java, CD2.15:25
stack, 114, 116

Polling, 589
Pop, 114
Power
clock rate and, 39
critical nature of, 55
efficiency, 402-3
relative, 40
PowerPC
algebraic right shift, E-33
branch registers, E-32-33
condition codes, E-12
instructions, E-12-13
instructions unique to, E-31-33
load multiple/store multiple, E-33
logical shifted immediate, E-33
rotate with mask, E-33
$\mathrm{P}+\mathrm{Q}$ redundancy, 604
Precise interrupts, 390
Prediction
2-bit scheme, 381
accuracy, 380, 381
dynamic branch, 380-83
loops and, 380
steady-state, 380
Prefetching, 547, 680
Primary memory. See Main memory
Primitive types, CD2.15:25
Priority levels, 590-92
Procedure calls
convention, B-22-33
examples, B-27-33
frame, B-23
preservation across, 118
Procedures, 112-22
compiling, 114
compiling, showing nested procedure
linking, 117-18
defined, 112
execution steps, 112
frames, 119
leaf, 116
nested, 116-18
recursive, 121, B-26-27
for setting arrays to zero, 158
sort, 150-55
strcpy, 124-25, 126
string copy, 124-26
swap, 149-50
Process identifiers, 510
Process-level parallelism, 632
Processor-memory bus, 582

Processors, 298-409
control, 19
as cores, 41
datapath, 19
defined, 14,19
dynamic multiple-issue, 392
I/O communication with, 589-90
multiple-issue, 391, 392
out-of-order execution, 403, 489
performance growth, 42
ROP, A-12, A-41
speculation, 392-93
static multiple-issue, 392, 393-97
streaming, 657, A-34
superscalar, 397, 398, 399-400, 646, CD4.15:4
technologies for building, 25-26
two-issue, 395
vector, 650-53
VLIW, 394
Product, 230
Product of sums, C-11
Program counters (PCs), 307
changing with conditional branch, 383
defined, 113, 307
exception, 509, 511
incrementing, 307, 309
instruction updates, 348
Program libraries, B-4
Programmable array logic (PAL), C-78
Programmable logic arrays (PLAs)
component dots illustration, C-16
control function implementation,
D-7, D-20-21
defined, C-12
example, C-13-14
illustrated, C-13
ROMs and, C-15-16
size, D-20
truth table implementation, C-13
Programmable logic devices (PLDs), C-78
Programmable real-time graphics, CDA.11:2-3
Programmable ROMs (PROMs), C-14
Programming languages
brief history of, CD2.20:6-7
object-oriented, 161
variables, 81
See also specific languages

Program performance
elements affecting, 38
understanding, 9
Programs
assembly language, 139
Java, starting, 146-48
parallel-processing, 634-38
starting, 139-48
translating, 139-48
Propagate
defined, C-40
example, C-44
super, C-41
Protected keywords, CD2.15:20
Protection
defined, 492
group, 602
implementing, 508-10
mechanisms, CD5.13:7
VMs for, 526
Protocol families/suites
analogy, CD6.11:2-3
defined, CD6.11:1
goal, CD6.11:2
Protocol stacks, CD6.11:3
Pseudodirect addressing, 133
Pseudoinstructions
defined, 140
summary, 141
Pseudo MIPS
defined, 280
instruction set, 281
Pthreads (POSIX threads), 666
PTX instructions, A-31, A-32
Public keywords, CD2.15:20
Push
defined, 114
using, 116

Q

Quad words, 168
Quicksort, 489, 490
Quotient, 237

R

Race, C-73
Radix sort, 489, 490, A-63-65
CUDA code, A-64
implementation, A-63-65

RAID. See Redundant arrays of inexpensive disks
RAMAC (Random Access Method of Accounting and Control), CD6.14:1, CD6.14:2
Rank units, 606, 607
Rasterization, A-50
Raster operation (ROP) processors, A-12, A-41
fixed function, A-41
GeForce 8800, A-50-51
Raster refresh buffer, 17
Read-only memories (ROMs), C-14-16
control entries, D-16-17
control function encoding, D-18-19
defined, C-14
dispatch, D-25
implementation, D-15-19
logic function encoding, C-15
overhead, D-18
PLAs and, C-15-16
programmable (PROM), C-14
total size, D-16
Read-stall cycles, 476
Receive message routine, 641
Receiver Control register, B-39
Receiver Data register, B-38, B-39
Recursive procedures, 121, B-26-27
clone invocation, 116
defined, B-26
stack in, B-29-30
See also Procedures
Reduced instruction set computer (RISC) architectures, E-2-45, CD2.20:4, CD4.15:3
group types, E-3-4
instruction set lineage, E-44
See also Desktop and server RISCs; Embedded RISCs
Reduction, 640
Redundant arrays of inexpensive disks (RAID), 600-606
calculation of, 605
defined, 600
example illustration, 601
history, CD6.14:6-7
PCI controller, 611
popularity, 600
RAID 0, 601
RAID 1, 602, CD6.14:6
RAID $1+0,606$

RAID 2, 602, CD6.14:6
RAID 3, 602, CD6.14:6, CD6.14:7
RAID 4, 602-3, CD6.14:6
RAID 5, 603-4, CD6.14:6, CD6.14:7
RAID 6, 604
spread of, CD6.14:7
summary, 604-5
use statistics, CD6.14:7
Reference bit, 499
References
absolute, 142
forward, B-11
types, CD2.15:25
unresolved, B-4, B-18
Register addressing, 132, 133
Register allocation, CD2.15:10-12
Register files, C-50, C-54-56
in behavioral Verilog, C-57
defined, 308, C-50, C-54
single, 314
two read ports implementation, C-55
with two read ports/one write port, C-55
write port implementation, C-56
Register-memory architecture, CD2.20:2
Registers
architectural, 404
base, 83
callee-saved, B-23
caller-saved, B-23
Cause, 386, 590, 591, B-35
clock cycle time and, 81
compiling C assignment with, 81-82
Count, B-34
defined, 80
destination, 98, 319
floating-point, 265
left half, 348
mapping, 94
MIPS conventions, 121
number specification, 309
page table, 497
pipeline, 366, 367, 368, 371
primitives, 80-81
Receiver Control, B-39
Receiver Data, B-38, B-39
renaming, 397
right half, 348
spilling, 86
Status, 386, 590, 591, B-35
temporary, 81, 115
Transmitter Control, B-39-40
Transmitter Data, B-40
usage convention, $\mathrm{B}-24$
use convention, B-22
variables, 81
x86, 168
Relational databases, CD6.14:5
Relative performance, 29
Relative power, 40
Reliability, 573
Relocation information, B-13, B-14
Remainder
defined, 237
instructions, B-55
Reorder buffers, 399, 402, 403
Replication, 536
Requested word first, 465
Reservation stations
buffering operands in, 400
defined, 399
Response time, 28, 29
Restartable instructions, 513
Restorations, 573
Return address, 113
Return from exception (ERET), 509
R-format, 319
ALU operations, 310
defined, 97
Ripple carry
adder, C-29
carry lookahead speed versus, C-46
RISC. See Desktop and server RISCs; Embedded RISCs; Reduced instruction set computer (RISC) architectures
Roofline model, 667-75
benchmarking multicores with, 675-84
with ceilings, 672,674
computational roofline, 673
IBM Cell QS20, 678
illustrated, 669
Intel Xeon e5345, 678
I/O intensive kernel, 675
Opteron generations, 670
with overlapping areas shaded, 674
peak floating-point performance, 668
peak memory performance, 669
Sun UltraSPARC T2, 678
with two kernels, 674

Rotational latency, 576
Rounding
accurate, 266
bits, 268
defined, 266
with guard digits, 267
IEEE 754 modes, 268
Routers, CD6.11:6
Row-major order, 265
R-type instructions, 308-9
datapath for, 323
datapath in operation for, 324

S

Saturation, 227-28
Scalable GPUs, CDA.11:4-5
SCALAPAK, 271
Scaling
strong, 637, 638
weak, 637
Scientific notation
adding numbers in, 250
defined, 244
for reals, 244
Secondary memory, 22
Sectors, 575
Seek time, 575
Segmentation, 495
Selector values, C-10
Semiconductors, 45
Send message routine, 641
Sensitivity list, C-24
Sequencers
explicit, D-32
implementing next-state function with, D-22-28
Sequential logic, C-5
Servers
cost and capability, 5
defined, 5
See also Desktop and server RISCs
Set-associative caches, 479-80
address portions, 484
block replacement strategies, 521
choice of, 520
defined, 479
four-way, 481, 486
memory-block location, 480
misses, 482-83

Set-associative caches (continued)
n-way, 479
two-way, 481
See also Caches
Set instructions, 109
Setup time, C-53, C-54
Shaders, CDA.11:3
defined, A-14
floating-point arithmetic, A-14
graphics, A-14-15
pixel example, A-15-17
Shading languages, A-14
Shared memory
caching in, A-58-60
CUDA, A-58
defined, A-21
as low-latency memory, A-21
N-body and, A-67-68
per-CTA, A-39
SRAM banks, A-40
See also Memory
Shared-memory multiprocessors (SMP), 638-40
defined, 633, 638
single physical address space, 638
synchronization, 639
Shift amount, 97
Shift instructions, 102, B-55-56
Signals
asserted, 305, C-4
control, 306, 320, 321, 322
deasserted, 305, C-4
Sign and magnitude, 245
Sign bit, 90
Signed division, 239-41
Signed multiplication, 234
Signed numbers, 87-94
sign and magnitude, 89
treating as unsigned, 110
Sign extension, 310
defined, 124
shortcut, 92-93
Significands, 246
addition, 250
multiplication, 255
Silicon
crystal ingot, 45
defined, 45
as key hardware technology, 54
wafers, 45

SIMD (Single Instruction Multiple Data), 649, 659
computers, CD7.14:1-3
data vector, A-35
extensions, CD7.14:3
for loops and, CD7.14:2
massively parallel multiprocessors, CD7.14:1
small-scale, CD7.14:3
vector architecture, 650-53
in x86, 649-50
SIMMs (single inline memory modules), CD5.13:4, CD5.13:5
Simple programmable logic devices (SPLDs), C-78
Simplicity, 176
Simultaneous multithreading (SMT), 646-48
defined, 646
support, 647
thread-level parallelism, 647
unused issue slots, 648
Single-clock-cycle pipeline
diagrams, 356
defined, 356
illustrated, 358
Single-cycle datapaths
illustrated, 345
instruction execution, 346
See also Datapaths
Single-cycle implementation
control function for, 327
defined, 327
nonpipelined execution versus pipelined execution, 334
non-use of, 328-30
penalty, 330
pipelined performance versus, 332-33
Single-instruction multiple-thread (SIMT), A-27-30
defined, A-27
multithreaded warp scheduling, A-28
overhead, A-35
processor architecture, A-28
warp execution and divergence, A-29-30
Single instruction single data (SISD), 648
Single precision
binary representation, 248
defined, 245
See also Double precision
Single-program multiple data (SPMD), 648, A-22
Small Computer Systems Interface (SCSI) disks, 577, 613
Smalltalk
Smalltalk-80, CD2.20:7
SPARC support, E-30
Snooping protocol, 536-37, 538
Snoopy cache coherence, CD5.9:16
Software
GPU driver, 655
layers, 10
multiprocessor, 632
parallel, 633
as service, 606, 686
systems, 10
Sort algorithms, 157
Sorting performance, A-54-55
Sort procedure, 150-55
code for body, 151-53
defined, 150
full procedure, 154-55
passing parameters in, 154
preserving registers in, 154
procedure call, 153
register allocation for, 151
See also Procedures
Source files, B-4
Source language, B-6
South bridge, 584
Space allocation
on heap, 120-22
on stack, 119
SPARC
annulling branch, E-23
CASA, E-31
conditional branches, E-10-12
fast traps, E-30
floating-point operations, E-31
instructions, E-29-32
least significant bits, E-31
multiple precision floating-point results, E-32
nonfaulting loads, E-32
overlapping integer operations, E-31
quadruple precision floating-point arithmetic, E-32
register windows, E-29-30
support for LISP and Smalltalk, E-30

Sparse matrices, A-55-58
Sparse Matrix-Vector multiply (SpMV), 679-80, 681, A-55, A-57, A-58
CUDA version, A-57
serial code, A-57
shared memory version, A-59
Spatial locality, 452-53
defined, 452
large block exploitation of, 464
tendency, 456
SPEC, CD1.10:10-11
CPU benchmark, 48-49
defined, CD1.10:10
power benchmark, 49-50
SPEC89, CD1.10:10
SPEC92, CD1.10:11
SPEC95, CD1.10:11
SPEC2000, CD1.10:11
SPEC2006, 282, CD1.10:11
SPECPower, 597
SPECrate, 664
SPECratio, 48
Special function units (SFUs), A-35
defined, A-43
GeForce 8800, A-50
Speculation, 392-93
defined, 392
hardware-based, 400
implementation, 392
performance and, 393
problems, 393
recovery mechanism, 393
Speed-up challenge, 635-38
balancing load, 637-38
bigger problem, 636-37
Spilling registers, 86,115
SPIM, B-40-45
byte order, B-43
defined, B-40
features, B-42-43
getting started with, B-42
MIPS assembler directives support, B-47-49
speed, B-41
system calls, B-43-45
versions, B-42
virtual machine simulation, B-41-42
SPLASH/SPLASH 2 (Stanford Parallel Applications for Shared-Memory), 664-66

Split caches, 470
Square root instructions, B-79
Stack architectures, CD2.20:3
Stack pointers
adjustment, 116
defined, 114
values, 116
Stacks
allocating space on, 119
for arguments, 156
defined, 114
pop, 114
push, 114,116
recursive procedures, B-29-30
Stack segment, B-22
Stalls, 338-39
avoiding with code reordering, 338-39
behavioral Verilog with detection, CD4.12:5-9
data hazards and, 371-74
defined, 338
illustrations, CD4.12:25, CD4.12:28-30
insertion into pipeline, 374
load-use, 377
memory, 478
as solution to control hazard, 340
write-back scheme, 476
write buffer, 476
Standby spares, 605
State
in 2-bit prediction scheme, 381
assignment, C-70, D-27
bits, D-8
exception, saving/restoring, 515
logic components, 305
specification of, 496
State elements
clock and, 306
combinational logic and, 306
defined, 305, C-48
inputs, 305
register file, C-50
in storing/accessing instructions, 308
Static branch prediction, 393
Static data
defined, B-20
as dynamic data, $\mathrm{B}-21$
segment, 120

Static multiple-issue processors, 392, 393-97
control hazards and, 394
instruction sets, 393
with MIPS ISA, 394-97
See also Multiple issue
Static random access memories (SRAMs), C-58-62
array organization, C-62
basic structure, C-61
defined, 20, C-58
fixed access time, C-58
large, C-59
read/write initiation, C-59
synchronous (SSRAMs), C-60
three-state buffers, C-59, C-60
Static variables, 118
Status register, 590
fields, B-34, B-35
illustrated, 591
Steady-state prediction, 380
Sticky bits, 268
Storage
disk, 575-79
flash, 580-82
nonvolatile, 575
Storage area networks (SANs),
CD6.11:11
Store buffers, 403
Stored program concept, 77
as computer principle, 100
illustrated, 101
principles, 176
Store instructions
access, A-41
base register, 319
block, 165
compiling with, 85
conditional, 138-39
defined, 85
details, B-68-70
EX stage, 353
floating-point, B-79
ID stage, 349
IF stage, 349
instruction dependency, 371
list of, B-68-70
MEM stage, 354
unit for implementing, 311
WB stage, 354
See also Load instructions

Store word, 85
Strcpy procedure, 124-25
defined, 124
as leaf procedure, 126
pointers, 126
See also Procedures
Stream benchmark, 675
Streaming multiprocessor (SM), A-48-49
Streaming processors, 657, A-34
array (SPA), A-41, A-46
GeForce 8800, A-49-50
Streaming SIMD Extension 2 (SSE2) floating-point architecture, 274-75
Stretch computer, CD4.15:1
Strings
defined, 124
in Java, 126-27
representation, 124
Striping, 601
Strong scaling, 637, 638
Structural hazards, 335-36, 352
Structured Query Language (SQL), CD6.14:5
Subnormals, 270
Subtracks, 606
Subtraction, 224-29
binary, 224-25
floating-point, 259, B-79-80
instructions, B-56-57
negative number, 226
overflow, 226
See also Arithmetic
Subword parallelism, E-17
Sum of products, C-11, C-12
Sun Fire x4150 server, 606-12
front/rear illustration, 608
idle and peak power, 612
logical connections and bandwidths, 609
minimum memory, 611
Sun UltraSPARC T2 (Niagara 2), 647, 658
base versus fully optimized performance, 683
characteristics, 677
defined, 677
illustrated, 676
LBMHD performance, 682
roofline model, 678
SpMV performance, 681

Supercomputers, 5, CD4.15:1
SuperH, E-15, E-39-40
Superscalars
defined, 397, CD4.15:4
dynamic pipeline scheduling, 398, 399-400
multithreading options, 646
Surfaces, A-41
Swap procedure, 149-50
body code, 150
defined, 149
full, 150, 151
register allocation, 149-50
See also Procedures
Swap space, 498
Switched networks, CD6.11:5
Switches, CD6.11:6-7
Symbol tables, 141, B-12, B-13
Synchronization, 137-39
barrier, A-18, A-20, A-34
defined, 639
lock, 137
overhead, reducing, 43
unlock, 137
Synchronizers
defined, C-76
from D flip-flop, C-76
failure, C-77
Synchronous bus, 583
Synchronous DRAM (SRAM), 473, C-60, C-65
Synchronous SRAM (SSRAM), C-60
Synchronous system, C-48
Syntax tree, CD2.15:3
System calls, B-43-45
code, B-43-44
defined, 509
loading, B-43
System Performance Evaluation Cooperative. See SPEC
Systems software, 10
SystemVerilog
cache controller, CD5.9:1-9
cache data and tag modules, CD5.9:5
FSM, CD5.9:6-9
simple cache block diagram, CD5.9:3
type declarations, CD5.9:1, CD5.9:2

T

Tags
defined, 458
in locating block, 484
page tables and, 498
size of, 486-87
Tail call, 121
Task identifiers, 510
Task parallelism, A-24
TCP/IP packet format, CD6.11:4
Telsa PTX ISA, A-31-34
arithmetic instructions, A-33
barrier synchronization, A-34
GPU thread instructions, A-32
memory access instructions, A-33-34
Temporal locality, 453
defined, 452
tendency, 456
Temporary registers, 81, 115
Terabytes, 5
Tesla multiprocessor, 658
Text segment, B-13
Texture memory, A-40
Texture/processor cluster (TPC), A-47-48
TFLOPS multiprocessor, CD7.14:5
Thrashing, 517
Thread blocks, 659
creation, A-23
defined, A-19
managing, A-30
memory sharing, A-20
synchronization, A-20
Thread dispatch, 659
Thread parallelism, A-22
Threads
creation, A-23
CUDA, A-36
ISA, A-31-34
managing, A-30
memory latencies and, A-74-75
multiple, per body, A-68-69
warps, A-27
Three Cs model, 523
Three-state buffers, C-59, C-60
Throughput
defined, 28
multiple issue and, 401
pipelining and, 344, 401

Thumb, E-15, E-38
Timing
asynchronous inputs, C-76-77
level-sensitive, C-75-76
methodologies, C-72-77
two-phase, C-75
TLB misses, 503
entry point, 514
handler, 514
handling, 510-16
minimization, 681
occurrence, 510
problem, 517
See also Translation-lookaside buffer (TLB)
Tomasulo's algorithm, CD4.15:2
Tournament branch predicators, 383
Tracks, 575
Transaction Processing Council (TPC), 596
Transaction processing (TP)
defined, 596
I/O benchmarks, 596-97
Transfer time, 576
Transistors, 26
Translation-lookaside buffer (TLB), 502-4, CD5.13:5
associativities, 503
defined, 502
illustrated, 502
integration, 504-8
Intrinsity FastMATH, 504
MIPS-64, E-26-27
typical values, 503
See also TLB misses
Transmitter Control register, B-39-40
Transmitter Data register, B-40
Trap instructions, B-64-66
Tree-based parallel scan, A-62
Truth tables, C-5
ALU control lines, D-5
for control bits, 318
datapath control outputs, D-17
datapath control signals, D-14
defined, 317
example, C-5
next-state output bits, D-15
PLA implementation, C-13
Two-level logic, C-11-14

Two-phase clocking, C-75
Two's complement representation, 89, 90
advantage, 90
defined, 89
negation shortcut, 91-92
rule, 93
sign extension shortcut, 92-93
TX-2 computer, CD7.14:3

U

Unconditional branches, 106
Underflow, 245
Unicode
alphabets, 126
defined, 126
example alphabets, 127
Unified GPU architecture,
A-10-12
illustrated, A-11
processor array, A-11-12
Uniform memory access (UMA), 638-39, A-9
defined, 638
multiprocessors, 639
Units
commit, 399, 402
control, 303, 316-17, D-4-8, D-10,
D-12-13
defined, 267
floating point, 267
hazard detection, 372, 373
for load/store implementation, 311
rank, 606, 607
special function (SFUs), A-35, A-43, A-50
UNIVAC I, CD1.10:4
UNIX, CD2.20:7, CD5.13:8-11
AT\&T, CD5.13:9
Berkeley version (BSD), CD5.13:9
genius, CD5.13:11
history, CD5.13:8-11
Unlock synchronization, 137
Unresolved references
defined, B-4
linkers and, B-18
Unsigned numbers, 87-94
Use latency
defined, 395
one-instruction, 396

v

Vacuum tubes, 26
Valid bit, 458
Variables
C language, 118
programming language, 81
register, 81
static, 118
storage class, 118
type, 118
VAX architecture, CD2.20:3, CD5.13:6
Vectored interrupts, 386
Vector processors, 650-53
conventional code comparison, 650-51
instructions, 652
multimedia extensions and, 653
scalar versus, 652
See also Processors
Verilog
behavioral definition of MIPS ALU, C-25
behavioral definition with bypassing, CD4.12:4-5
behavioral definition with stalls for loads, CD4.12:6-7, CD4.12:8-9
behavioral specification, C-21, CD4.12:2-3
behavioral specification of multicycle MIPS design, CD4.12:11-12
behavioral specification with simulation, CD4.12:1-5
behavioral specification with stall detection, CD4.12:5-9
behavioral specification with synthesis, CD4.12:10-16
blocking assignment, C-24
branch hazard logic implementation, CD4.12:7-9
combinational logic, C-23-26
datatypes, C-21-22
defined, C-20
forwarding implementation, CD4.12:3
MIPS ALU definition in, C-35-38
modules, C-23
multicycle MIPS datapath, CD4.12:13
nonblocking assignment, C-24
operators, C-22
program structure, C-23

Verilog (continued)
reg, C-21-22
sensitivity list, C-24
sequential logic specification,
C-56-58
structural specification, C-21
wire, C-21-22
Vertical microcode, D-32
Very large-scale integrated (VLSI)
circuits, 26
Very Long Instruction Word (VLIW)
defined, 393
first generation computers, CD4.15:4
processors, 394
VHDL, C-20-21
Video graphics array (VGA) controllers, A-3-4
Virtual addresses
causing page faults, 514
defined, 493
mapping from, 494
size, 495
Virtualizable hardware, 527
Virtually addressed caches, 508
Virtual machine monitors (VMMs)
defined, 526
implementing, 545-47
laissez-faire attitude, 546
page tables, 529
in performance improvement, 528
requirements, 527
Virtual machines (VMs), 525-29
benefits, 526
defined, B-41
illusion, 529
instruction-set architecture support, 527-28
performance improvement, 528
for protection improvement, 526
simulation of, B-41-42
Virtual memory, 492-517
address translation, 493, 502-4
defined, 492
integration, 504-8
mechanism, 516
motivations, 492-93
page faults, 493, 498
protection implementation, 508-10
segmentation, 495
summary, 516
virtualization of, 529
writes, 501
See also Pages
Visual computing, A-3
Volatile memory, 21

w

Wafers, 46
defects, 46
defined, 45
dies, 46
yield, 46
Warps, 657, A-27
Weak scaling, 637
Wear leveling, 581
Web server benchmark
(SPECWeb), 597
While loops, 107-8
Whirlwind, CD5.13:1, CD5.13:3
Wide area networks (WANs), CD6.14:7-8
defined, 25
history of, CD6.14:7-8
See also Networks
Winchester disk, CD6.14:2-4
Wireless LANs, CD6.11:8-10
Words
accessing, 82
defined, 81
double, 168
load, 83, 85
quad, 168
store, 85
Working set, 517
Worst-case delay, 330
Write-back caches
advantages, 522
cache coherency protocol, CD5.9:12
complexity, 468
defined, 467, 521
stalls, 476
write buffers, 468
See also Caches
Write-back stage
control line, 362
load instruction, 350
store instruction, 352
Write buffers
defined, 467
stalls, 476
write-back cache, 468
Write invalidate protocols, 536, 537
Writes
complications, 467
expense, 516
handling, 466-68
memory hierarchy handling of, 521-22
schemes, 467
virtual memory, 501
write-back cache, 467, 468
write-through cache, 467, 468
Write serialization, 535-36
Write-stall cycles, 476
Write-through caches
advantages, 522
defined, 467, 521
tag mismatch, 468
See also Caches

X

X86, 165-74
brief history, CD2.20:5
conclusion, 172
data addressing modes, 168, 170
evolution, 165-68
first address specifier encoding, 174
floating point, 272-74
floating-point instructions, 273
historical timeline, 166-67
instruction encoding, 171-72
instruction formats, 173
instruction set growth, 176
instruction types, 169
integer operations, 168-71
I/O interconnects, 584-86
registers, 168
SIMD in, 649-50
typical instructions/functions, 171
typical operations, 172
Xerox Alto computer, CD1.10:7-8

