
3.10 Historical Perspective and Further
Reading

This section surveys the history of the fl oating point going back to von Neumann,
including the surprisingly controversial IEEE standards effort, the rationale for the
80-bit stack architecture for fl oating point in the IA-32, and an update on the next
round of the standard.

At fi rst it may be hard to imagine a subject of less interest than the correctness
of computer arithmetic or its accuracy, and harder still to understand why a subject
so old and mathematical should be so controversial. Computer arithmetic is as old
as computing itself, and some of the subject’s earliest notions, like the economical
reuse of registers during serial multiplication and division, still command respect
today. Maurice Wilkes [1985] recalled a conversation about that notion during his
visit to the United States in 1946, before the earliest stored-program com puter had
been built:

. . . a project under von Neumann was to be set up at the In stitute of Advanced
Studies in Princeton. . . . Goldstine ex plained to me the principal features of the
design, including the device whereby the digits of the multiplier were put into the
tail of the accumulator and shifted out as the least sig nifi cant part of the product
was shifted in. I expressed some admiration at the way registers and shifting
circuits were arranged . . . and Goldstine remarked that things of that na ture
came very easily to von Neumann.

There is no controversy here; it can hardly arise in the con text of exact integer
arithmetic, so long as there is general agreement on what integer the correct result
should be. How ever, as soon as approximate arithmetic enters the picture, so does
controversy, as if one person’s “negligible” must be another’s “everything.”

The First Dispute

Floating-point arithmetic kindled disagreement before it was ever built. John von
Neumann was aware of Konrad Zuse’s pro posal for a computer in Germany in
1939 that was never built, probably because the fl oating point made it appear too
compli cated to fi nish before the Germans expected World War II to end. Hence,
von Neumann refused to include it in the computer he built at Princeton. In an
infl uential report coauthored in 1946 with H. H. Goldstine and A. W. Burks, he gave
the arguments for and against fl oating point. In favor:

. . . to retain in a sum or product as many signifi cant digits as possible and . . . to
free the human operator from the bur den of estimating and inserting into a
problem “scale fac tors”—multiplication constants which serve to keep numbers
within the limits of the machine.

Gresham’s Law (“Bad money
drives out Good”) for
comput ers would say, “The
Fast drives out the Slow even
if the Fast is wrong.”

W. Kahan, 1992

CD3-9780123747501.indd 1CD3-9780123747501.indd 1 22/07/11 10:18 PM22/07/11 10:18 PM

3.10-2 3.10 Historical Perspective and Further Reading

Floating point was excluded for several reasons:

There is, of course, no denying the fact that human time is consumed in arrang-
ing for the introduction of suitable scale factors. We only argue that the time
consumed is a very small percentage of the total time we will spend in preparing
an interesting problem for our machine. The fi rst advantage of the fl oating point
is, we feel, somewhat illusory. In order to have such a fl oating point, one must
waste memory ca pacity which could otherwise be used for carrying more dig its
per word. It would therefore seem to us not at all clear whether the modest
advan tages of a fl oating binary point offset the loss of memory capacity and the
increased com plexity of the arithmetic and control circuits.

The argument seems to be that most bits devoted to exponent fi elds would be bits
wasted. Experience has proved otherwise.

One software approach to accommodate reals without fl oating-point hardware
was called fl oating vectors; the idea was to com pute at runtime one scale factor
for a whole array of numbers, choosing the scale factor so that the array’s biggest
number would barely fi ll its fi eld. By 1951, James H. Wilkinson had used this scheme
extensively for matrix computations. The problem proved to be that a program
might encounter a very large value, and hence the scale factor must accommodate
these rare large numbers. The common numbers would thus have many leading 0s,
since all numbers had to use a single scale factor. Accuracy was sacrifi ced, because
the least signifi cant bits had to be lost on the right to accommodate leading 0s.
This wastage became obvious to practitioners on early computers that displayed
all their memory bits as dots on cathode ray tubes (like TV screens) because the
loss of precision was visible. Where fl oating point deserved to be used, no practical
alternative existed.

Thus, true fl oating-point hardware became popular because it was useful. By
1957, fl oating-point hardware was almost ubiqui tous. A decimal fl oating-point
unit was available for the IBM 650, and soon the IBM 704, 709, 7090, 7094 . . . series
would offer binary fl oating-point hardware for double as well as single precision.

As a result, everybody had fl oating point, but every imple mentation was different.

Diversity versus Portability

Since roundoff introduces some error into almost all fl oating-point operations,
to complain about another bit of error seems picayune. So for 20 years, nobody
complained much that those operations behaved a little differently on different
computers. If software required clever tricks to circumvent those idiosyncra sies and
fi nally deliver results correct in all but the last several bits, such tricks were deemed
part of the programmer’s art. For a long time, matrix computations mystifi ed most
people who had no notion of error analysis; perhaps this continues to be true. That

CD3-9780123747501.indd 2CD3-9780123747501.indd 2 22/07/11 10:18 PM22/07/11 10:18 PM

 3.10 Historical Perspective and Further Reading 3.10-3

may be why people are still surprised that numerically sta ble matrix computations
depend upon the quality of arithmetic in so few places, far fewer than are generally
supposed. Books by Wilkinson and widely used software packages like Linpack and
Eispack sustained a false impression, widespread in the early 1970s, that a modicum
of skill suffi ced to produce portable numerical software.

“Portable” here means that the software is distributed as source code in some
standard language to be compiled and exe cuted on practically any commercially
signifi cant computer, and that it will then perform its task as well as any other pro-
gram performs that task on that computer. Insofar as numerical soft ware has often
been thought to consist entirely of computer-independent mathematical formulas,
its portability has often been taken for granted; the mistake in that presumption
will become clear shortly.

Packages like Linpack and Eispack cost so much to develop—over a hundred
dollars per line of Fortran delivered—that they could not have been developed
without U.S. government subsidy; their portability was a pre condition for that
subsidy. But nobody thought to distinguish how various components contributed
to their cost. One component was algorithmic—devise an algorithm that deserves
to work on at least one computer despite its round off and over-/underfl ow
limitations. Another component was the software engineering effort required to
achieve and confi rm portability to the diverse computers commercially signifi cant
at the time; this component grew more onerous as ever more diverse fl oating-point
arithmetics blossomed in the 1970s. And yet scarcely anybody realized how much
that diversity infl ated the cost of such software packages.

A Backward Step

Early evidence that somewhat different arithmetics could engen der grossly different
software development costs was presented in 1964. It happened at a meeting of
SHARE, the IBM mainframe users’ group, at which IBM announced System/360,
the succes sor to the 7094 series. One of the speakers described the tricks he had
been forced to devise to achieve a level of quality for the S/360 library that was not
quite so high as he had previously achieved for the 7094.

Part of the trouble could have been foretold by von Neumann, had he still been
alive. In 1948, he and Goldstine had published a lengthy error analysis so diffi cult
and so pessimistic that hardly anybody paid attention to it. It did predict correctly,
however, that computations with larger arrays of data would probably fall prey
to roundoff more often. IBM S/360s had bigger memories than 7094s, so data
arrays could grow bigger, and they did. To make matters worse, the S/360s had
narrower single precision words (32 bits versus 36) and used a cruder arithmetic
(hexa decimal or base 16 versus binary or base 2) with consequently poorer worst-
case precision (21 signifi cant bits versus 27) than the old 7094s. Consequently,

CD3-9780123747501.indd 3CD3-9780123747501.indd 3 22/07/11 10:18 PM22/07/11 10:18 PM

3.10-4 3.10 Historical Perspective and Further Reading

software that had almost always provided (barely) satisfactory accuracy on 7094s
too often pro duced inaccurate results when run on S/360s. The quickest way to
recover adequate accuracy was to replace old codes’ single precision declarations
with double precision before recompilation for the S/360. This practice exercised
S/360 double precision far more than had been expected.

The early S/360’s worst troubles were caused by lack of a guard digit in double
precision. This lack showed up in multiplica tion as a failure of identities like 1.0

* x = x because multiplying x by 1.0 dropped x’s last hexadecimal digit (4 bits).
Similarly, if x and y were very close but had different exponents, subtraction
dropped off the last digit of the smaller operand before computing x − y. This
last aberration in double precision undermined a pre cious theorem that single
precision then (and now) honored: If 1/2 ≤ x/y ≤ 2, then no rounding error can
occur when x − y is computed; it must be computed exactly.

Innumerable computations had benefi ted from this minor theo rem, most often
unwittingly, for several decades before its fi rst formal announcement and proof.
We had been taking all this stuff for granted.

The identities and theorems about exact relationships that per sisted, despite
roundoff, with reasonable implementations of approximate arithmetic were not
appreciated until they were lost. Previously, it had been thought that the things to
matter were preci sion (how many signifi cant digits were carried) and range (the
spread between over-/underfl ow thresholds). Since the S/360’s double precision
had more precision and wider range than the 7094’s, software was expected to
continue to work at least as well as before. But it didn’t.

Programmers who had matured into program managers were appalled at
the cost of converting 7094 software to run on S/360s. A small subcommittee of
SHARE proposed improve ments to the S/360 fl oating point. This committee was
surprised and grateful to get a fair part of what they asked for from IBM, including
all-important guard digits. By 1968, these had been retrofi tted to S/360s in the
fi eld at considerable expense; worse than that was customers’ loss of faith in IBM’s
infallibility (a lesson learned by Intel 30 years later). IBM employees who can
remember the incident still shudder.

The People Who Built the Bombs

Seymour Cray was associated for decades with the CDC and Cray computers that
were, when he built them, the world’s biggest and fastest. He always understood
what his customers wanted most: speed. And he gave it to them even if, in so doing,
he also gave them arithmetics more “interesting” than anyone else’s. Among his
customers have been the great government laborato ries like those at Livermore and
Los Alamos, where nuclear weapons were designed. The challenges of “interesting”
arith metics were pretty tame to people who had to overcome Mother Nature’s
challenges.

CD3-9780123747501.indd 4CD3-9780123747501.indd 4 22/07/11 10:18 PM22/07/11 10:18 PM

 3.10 Historical Perspective and Further Reading 3.10-5

Perhaps all of us could learn to live with arithmetic idiosyn crasy if only one
computer’s idiosyncrasies had to be endured. Instead, when accumulating different
computers’ different anom alies, software dies the Death of a Thousand Cuts. Here
is an example from Cray’s computers:

if (x == 0.0) y = 17.0 else y = z/x

Could this statement be stopped by a divide-by-zero error? On a CDC 6600 it
could. The reason was a confl ict between the 6600’s adder, where x was compared
with 0.0, and the multi plier and divider. The adder’s comparison examined x’s
leading 13 bits, which suffi ced to distinguish zero from normal nonzero fl oating-
point numbers x. The multiplier and divider examined only 12 leading bits. Con-
sequently, tiny numbers existed that were nonzero to the adder but zero to the
multiplier and divider! To avoid disasters with these tiny numbers, programmers
learned to replace statements like the one above with

if (1.0 ∗ x == 0.0) y = 17.0 else y = z/x

But this statement is unsafe to use in would-be portable software because it
malfunctions obscurely on other computers designed by Cray, the ones marketed
by Cray Research, Inc. If x was so huge that 2.0 * x would overfl ow, then 1.0 * x
might overfl ow too! Overfl ow happens because Cray computers check the product’s
exponent before the product’s exponent has been normalized, just to save the delay
of a single AND gate.

Rounding error anomalies that are far worse than the over-/underfl ow anomaly
just discussed also affect Cray computers. The worst error came from the lack of
a guard digit in add/sub tract, an affl iction of IBM S/360s. Further bad luck for
software is occasioned by the way Cray economized his multiplier; about one-
third of the bits that normal multiplier arrays generate have been left out of his
multipliers, because they would contribute less than a unit to the last place of the
fi nal Cray-rounded prod uct. Consequently, a Cray’s multiplier errs by almost a bit
more than might have been expected. This error is compounded when division
takes three multiplications to improve an approximate reciprocal of the divisor
and then multiply the numerator by it. Square root compounds a few more
multiplication errors.

The fast way drove out the slow, even though the fast was occasionally slightly
wrong.

Making the World Safe for Floating Point, or Vice Versa

William Kahan was an undergraduate at the University of Toronto in 1953 when he
learned to program its Ferranti-Manchester Mark-I computer. Because he entered
the fi eld early, Kahan became acquainted with a wide range of devices and a large
pro portion of the personalities active in computing; the numbers of both were small
at that time. He has performed computations on slide rules, desktop mechanical

CD3-9780123747501.indd 5CD3-9780123747501.indd 5 22/07/11 10:18 PM22/07/11 10:18 PM

3.10-6 3.10 Historical Perspective and Further Reading

calculators, tabletop analog dif ferential analyzers, and so on; he has used all but the
earliest electronic computers and calculators mentioned in this book.

Kahan’s desire to deliver reliable software led to an interest in error analysis that
intensifi ed during two years of postdoctoral study in England, where he became
acquainted with Wilkinson. In 1960, he resumed teaching at Toronto, where an
IBM 7090 had been acquired, and was granted free rein to tinker with its oper-
ating system, Fortran compiler, and runtime library. (He denies that he ever came
near the 7090 hardware with a soldering iron but admits asking to do so.) One
story from that time illuminates how misconceptions and numerical anomalies in
computer sys tems can incur awesome hidden costs.

A graduate student in aeronautical engineering used the 7090 to simulate the
wings he was designing for short takeoffs and landings. He knew such a wing would
be diffi cult to control if its characteristics included an abrupt onset of stall, but he
thought he could avoid that. His simulations were telling him otherwise. Just to be
sure that roundoff was not interfering, he had repeated many of his calculations in
double precision and gotten results much like those in single; his wings had stalled
abruptly in both precisions. Disheartened, the student gave up.

Meanwhile Kahan replaced IBM’s logarithm program (ALOG) with one of
his own, which he hoped would provide better accu racy. While testing it, Kahan
reran programs using the new ver sion of ALOG. The student’s results changed
signifi cantly; Kahan approached him to fi nd out what had happened.

The student was puzzled. Much as the student preferred the results produced
with the new ALOG—they predicted a gradual stall—he knew they must be wrong
because they disagreed with his double precision results. The discrepancy between
single and double precision results disappeared a few days later when a new release
of IBM’s double precision arithmetic software for the 7090 arrived. (The 7090 had
no double precision hardware.) He went on to write a thesis about it and to build
the wings; they performed as predicted. But that is not the end of the story.

In 1963, the 7090 was replaced by a faster 7094 with double precision fl oating-
point hardware but with otherwise practically the same instruction set as the 7090.
Only in double precision and only when using the new hardware did the wing stall
abruptly again. A lot of time was spent to fi nd out why. The 7094 hard ware turned
out, like the superseded 7090 software and the sub sequent early S/360s, to lack a
guard bit in double precision. Like so many programmers on those computers and
on Cray’s, the student discovered a trick to compensate for the lack of a guard digit;
he wrote the expression (0.5 – x) + 0.5 in place of 1.0 – x. Nowadays we
would blush if we had to explain why such a trick might be necessary, but it solved
the student’s problem.

Meanwhile the lure of California was working on Kahan and his family; they came
to Berkeley and he to the University of Cali fornia. An opportunity presented itself
in 1974 when accuracy questions induced Hewlett-Packard’s calculator designers to
call in a consultant. The consultant was Kahan, and his work dramatically improved

CD3-9780123747501.indd 6CD3-9780123747501.indd 6 22/07/11 10:18 PM22/07/11 10:18 PM

 3.10 Historical Perspective and Further Reading 3.10-7

the accuracy of HP calculators, but that is another story. Fruitful collaboration with
congenial coworkers, however, fortifi ed him for the next and crucial opportunity.

It came in 1976, when John F. Palmer at Intel was empowered to specify the “best
possible” fl oating-point arithmetic for all of Intel’s product line. The fl oating-point
standard was originally started for the iAPX-432, but when it was late, Intel started
the 8086 as a short term emergency stand-in until the iAPX-432 was ready. The
iAPX-432 never became popular, so the emergency stand-in became the standard-
bearer for Intel. The 8087 fl oating-point coprocessor for the 8086 was contemplated.
(A coproces sor is simply an additional chip that accelerates a portion of the work of
a processor; in this case, it accelerated fl oating-point computation.)

Palmer had obtained his Ph.D. at Stanford a few years before and knew whom
to call for counsel of perfection—Kahan. They put together a design that obviously
would have been impossible only a few years earlier and looked not quite possible
at the time. But a new Israeli team of Intel employees led by Rafi Navé felt chal-
lenged to prove their prowess to Americans and leaped at an opportunity to put
something impossible on a chip—the 8087.

By now, fl oating-point arithmetics that had been merely diverse among main-
frames had become chaotic among micropro cessors, one of which might be host to
a dozen varieties of arith metic in ROM fi rmware or software. Robert G. Stewart, an
engineer prominent in IEEE activities, got fed up with this anar chy and proposed
that the IEEE draft a decent fl oating-point stan dard. Simultaneously, word leaked
out in Silicon Valley that Intel was going to put on one chip some awesome fl oat-
ing point well beyond anything its competitors had in mind. The competition had
to fi nd a way to slow Intel down, so they formed a committee to do what Stewart
requested.

Meetings of this committee began in late 1977 with a plethora of competing
drafts from innumerable sources and dragged on into 1985, when IEEE Standard
754 for Binary Floating Point was made offi cial. The winning draft was very close
to one submitted by Kahan, his student Jerome T. Coonen, and Harold S. Stone, a
professor visiting Berkeley at the time. Their draft was based on the Intel design,
with Intel’s permission, of course, as simplifi ed by Coonen. Their harmonious
combination of features, almost none of them new, had at the outset attracted more
support within the committee and from outside experts like Wilkinson than any
other draft, but they had to win nearly unanimous sup port within the committee
to win offi cial IEEE endorsement, and that took time.

The First IEEE 754 Chips

In 1980, Intel became tired of waiting and released the 8087 for use in the IBM PC.
The fl oating-point architecture of the compan ion 8087 had to be retro fi tted
into the 8086 opcode space, mak ing it inconvenient to offer two operands per

CD3-9780123747501.indd 7CD3-9780123747501.indd 7 22/07/11 10:18 PM22/07/11 10:18 PM

3.10-8 3.10 Historical Perspective and Further Reading

instruction as found in the rest of the 8086. Hence, the decision for one operand
per instruction using a stack: “The designer’s task was to make a Virtue of this
Necessity.” (Kahan’s [1990] history of the stack architecture selection for the 8087
is entertaining reading.)

Rather than the classical stack architecture, which has no pro vision for avoiding
common subexpressions from being pushed and popped from memory into the
top of the stack found in regis ters, Intel tried to combine a fl at register fi le with
a stack. The reasoning was that the restriction of the top of stack as one operand
was not so bad since it only required the execution of an FXCH instruction (which
swapped registers) to get the same result as a two-operand instruction, and FXCH
was much faster than the fl oating-point operations of the 8087.

Since fl oating-point expressions are not that complex, Kahan reasoned that eight
registers meant that the stack would rarely overfl ow. Hence, he urged that the 8087
use this hybrid scheme with the provision that stack overfl ow or stack underfl ow
would interrupt the 8086 so that interrupt software could give the illu sion to the
compiler writer of an unlimited stack for fl oating-point data.

The Intel 8087 was implemented in Israel, and 7500 miles and 10 time zones
made communication from California diffi cult. According to Palmer and Morse
(The 8087 Primer, J. Wiley, New York, 1984, p. 93):

Unfortunately, nobody tried to write a software stack man ager until after the
8087 was built, and by then it was too late; what was too complicated to perform
in hardware turned out to be even worse in software. One thing found lacking is
the ability to conveniently determine if an invalid operation is indeed due to a
stack overfl ow. . . . Also lacking is the ability to restart the instruction that caused
the stack overfl ow . . .

The result is that the stack exceptions are too slow to handle in software. As Kahan
[1990] says:

Consequently, almost all higher-level languages’ compilers emit ineffi cient
code for the 80x87 family, degrading the chip’s performance by typically 50%
with spurious stores and loads necessary simply to preclude stack over/under-
fl ow. . . .

I still regret that the 8087’s stack implementation was not quite so neat as my
original intention. . . . If the original de sign had been realized, compilers today
would use the 80x87 and its descendents more effi ciently, and Intel’s competitors
could more easily market faster but compatible 80x87 imi tations.

In 1982, Motorola announced its 68881, which found a place in Sun 3s and
Macintosh IIs; Apple had been a supporter of the pro posal from the beginning.

CD3-9780123747501.indd 8CD3-9780123747501.indd 8 22/07/11 10:18 PM22/07/11 10:18 PM

 3.10 Historical Perspective and Further Reading 3.10-9

Another Berkeley graduate student, George S. Taylor, had soon designed a high-
speed implementation of the proposed standard for an early superminicomputer
(ELXSI 6400). The standard was becoming de facto before its fi nal draft’s ink
was dry.

An early rush of adoptions gave the computing industry the false impression
that IEEE 754, like so many other standards, could be implemented easily by fol-
lowing a standard recipe. Not true. Only the enthusiasm and ingenuity of its early
implementors made it look easy.

In fact, to implement IEEE 754 correctly demands extraordi narily diligent atten-
tion to detail; to make it run fast demands extraordinarily competent ingenuity of
design. Had the indus try’s engineering managers realized this, they might not have
been so quick to affi rm that, as a matter of policy, “We conform to all applicable
standards.”

IEEE 754 Today

Unfortunately, the compiler-writing community was not repre sented adequately in
the wrangling, and some of the features didn’t balance language and compiler issues
against other points. That community has been slow to make IEEE 754’s unusual
fea tures available to the applications programmer. Humane excep tion handling is
one such unusual feature; directed rounding another. Without compiler support,
these features have atro phied.

The successful parts of IEEE 754 are that it is a widely imple mented standard
with a common fl oating-point format, it requires minimum accuracy to one-half
ulp in the least signifi cant bit, and that operations must be commutative.

The IEEE 754/854 have been implemented to a considerable degree of fi delity in
at least part of the product line of every North American computer manufacturer.
The only signifi cant exceptions were the DEC VAX, IBM S/370 descendants,
and Cray Research vector supercomputers, and all three have been replaced by
compliant computers.

In 1989, the Association for Computing Machinery, acknowl edging the benefi ts
conferred upon the computing industry by IEEE 754, honored Kahan with the
Turing Award. On accepting it, he thanked his many associates for their diligent
support, and his adversaries for their blunders. So . . . not all errors are bad.

IEEE rules ask that a standard be revisited periodically for updating. A commit-
tee started in 2000, drafts of the revised standards were circulated for voting, and
were approved in 2008. The revised standard, IEEE Std 754-2008 [2008], includes
several new types: 16-bit fl oating point, called half precision; 128-bit fl oating point,
called quad precision; and three decimal types, matching the length of the 32-bit,
64-bit, and 128-bit binary formats.

CD3-9780123747501.indd 9CD3-9780123747501.indd 9 22/07/11 10:18 PM22/07/11 10:18 PM

3.10-10 3.10 Historical Perspective and Further Reading

Further Reading

If you are interested in learning more about fl oating point, two publications by
David Goldberg [1991, 2002] are good starting points; they abound with pointers
to further reading. Several of the stories told on the CD come from Kahan [1972,
1983]. The latest word on the state of the art in computer arithmetic is often
found in the Proceedings of the latest IEEE-sponsored Sym posium on Computer
Arithmetic, held every two years; the 16th was held in 2003.

Burks, A. W., H. H. Goldstine, and J. von Neumann [1946]. “Preliminary discussion of the logical design of an
electronic computing instrument,” Report to the U.S. Army Ordnance Dept., p. 1; also in Papers of John von
Neumann, W. Aspray and A. Burks (Eds.), MIT Press, Cambridge, MA, and Tomash Publishers, Los Angeles,
1987, 97–146.

This classic paper includes arguments against fl oating-point hardware.

Goldberg, D. [2002]. “Computer arithmetic,” Appendix A of Computer Architecture: A Quantitative Approach,
third edition, J. L. Hennessy and D. A. Patterson, Morgan Kaufmann Publishers, San Francisco.

A more advanced introduction to integer and fl oating-point arithmetic, with emphasis on hardware. It covers
 Sections 3.4–3.6 of this book in just 10 pages, leaving another 45 pages for advanced topics.

Goldberg, D. [1991]. “What every computer scientist should know about fl oating-point arithmetic,” ACM
Computing Surveys 23(1) 5–48.

Another good introduction to fl oating-point arithmetic by the same author, this time with emphasis on software.

Kahan, W. [1972]. “A survey of error-analysis,” in Info. Processing 71 (Proc. IFIP Congress 71 in Ljubljana),
Vol. 2, North-Holland Publishing, Amster dam, 1214–1239.

This survey is a source of stories on the importance of accurate arithmetic.

Kahan, W. [1983]. “Mathematics written in sand,” Proc. Amer. Stat. Assoc. Joint Summer Meetings of 1983,
 Statistical Computing Section, 12–26.

The title refers to silicon and is another source of stories illustrating the importance of accurate arithmetic.

Kahan, W. [1990]. “On the advantage of the 8087’s stack,” unpublished course notes, Computer Science
 Division, University of California, Berkeley.

What the 8087 fl oating-point architecture could have been.

Kahan, W. [1997]. Available via a link to Kahan’s homepage at www.mkp.com/books_catalog/ cod/links.htm.

A collection of memos related to fl oating point, including “Beastly numbers” (another less famous Pentium bug),
“Notes on the IEEE fl oating point arithmetic” (including comments on how some features are atrophying), and
“The baleful effects of comput ing benchmarks” (on the unhealthy preoccupation on speed versus correctness, accu-
racy, ease of use, fl exibility, . . .).

Koren, I. [2002]. Computer Arithmetic Algorithms, second edition, A. K. Peters, Nat ick, MA.

A textbook aimed at seniors and fi rst-year graduate students that explains funda mental principles of basic arith-
metic, as well as complex operations such as logarith mic and trigonometric functions.

Wilkes, M. V. [1985]. Memoirs of a Computer Pioneer, MIT Press, Cambridge, MA.

This computer pioneer’s recollections include the derivation of the standard hardware for multiply and divide
 developed by von Neumann.

CD3-9780123747501.indd 10CD3-9780123747501.indd 10 22/07/11 10:18 PM22/07/11 10:18 PM

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 212
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 212
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 424
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU ([Based on 'ELS Web Pdf_01'] [Based on 'ELS Web Pdf'] [Based on 'Els Web Pdf'] [Based on 'Els Web Pdf'] [Based on 'ELS_WOBL'] Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /ExportLayers /ExportVisiblePrintableLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /DocumentRGB
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks true
 /IncludeHyperlinks true
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

