Experiment No. 9
Encryption Using LFSRs
ECE 446

Peter CHINETTI

November 4, 2014

Instructor: Professor Shanechi

1 Introduction

Data encryption is a critical field in modern telecommunications, however,
it is typically an computationally expensive procedure if done using general
purpose procesors. FPGAs can be configured to quickly encode/decode signals
ato offload the task of encryption.

LFSRs are a method to create a pseudorandom sequence of bytes. It is created
with a combination of XOR gates and D flip flops.

The encryption method used is simple: XOR a secret with a codeword gen-
erated by the LFSR, and transmit. Upon recepit: XOR again with the same
LFSR codeword to recover the secret.

2 Procedure

a. Write VHDL to implement encoder/decoder logic.
b. Assign pins to ports

c. Simulate

3 Equipment
e PC

e Spartan-3E development board

4 Code

4.1 Top-level Module

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
entity encryptor is
Port (SEED : in STDLOGIC.VECTOR (7 downto 0);
MIN : in STDLOGIC.VECTOR (7 downto 0);
MOUT : out STDLOGIC.VECTOR (7 downto 0)
CRYPT : out STDLOGIC.VECTOR (7 downto 0);
CLK : in STD.LOGIC;
LOAD : in STD_LOGIC;
EN : in STD_LOGIC);
end encryptor;

;| architecture Behavioral of encryptor is

signal channel : STDLOGIC_VECTOR(7 downto 0);

component LFSR
Port (mout : out STDLOGIC.VECTOR (7 downto 0);
min, seed: in STD_LOGIC_VECTOR (7 downto
clk : in STD_LOGIC;
load : in STD_LOGIC;
en : in STD_LOGIC);
end component;
begin
Ifsr_0: LFSR
port map(
mout => channel ,
min => MIN,
seed => SEED,
clk = CLK,
load => LOAD,
en => EN
)

Ifsr_1: LFSR
port map(
mout => MOUT,
min => channel,

seed => SEED,

clk = CLK,
load => LOAD,
en => EN

)
CRYPT <= channel;

s5|end Behavioral;

= x”7007;

0);

encryptor.vhd

4.2 LFSR

5

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity LFSR is

Port (mout : out STD.LOGIC.VECTOR (7 downto 0);
min, seed: in STDLOGIC.VECTOR (7 downto 0);
clk : in STD_LOGIC;
load : in STD_LOGIC;

en : STD_LOGIC);
end LFSR;

architecture Behavioral of LFSR is
signal d : STDLOGIC_.VECTOR (7 downto 0);
signal q : STD_LOGIC_.VECTOR (7 downto 0):= x”347;
signal clk_i : STD_LOGIC;
begin
clk_i <= en and clk;

process (clk_i)
begin
if rising_edge (clk_i) then
q <= d;
end if;
end process;

process (load, min)
begin
if load=’"0" then
for i in 0 to 7 loop
if i=7 then
d(7) <= a(0);
elsif i>2 and i<6 then
d(i) <= q(0) xmnor q(i+1);

else
(i) <= a(i+1);
end if;
end loop;
elsif load = 1’ then
d <= seed;
end if;

end process;
mout <= q xor min;

end Behavioral;

LFSR.vhd

4.3 Test

LIBRARY ieee;
USE ieee.std_-logic_-1164 .ALL;

ENTITY encryptor_test IS

39

61

END encryptor_test;
ARCHITECTURE behavior OF encryptor_test IS
—— Component Declaration for the Unit Under Test (UUT)

COMPONENT' encryptor

PORT(
SEED : IN std_logic_vector (7 downto 0);
MIN : IN std_-logic-vector (7 downto 0);
MOUT : OUT std_-logic_vector (7 downto 0);
CLK : IN std-logic;
LOAD : IN std_-logic;

EN : IN std_logic

);

END COMPONENT;

—Inputs

signal SEED : std_logic_vector (7 downto 0) := x7347;

signal MIN : std_logic_vector (7 downto 0) := (others => ’0’);
signal CLK : std_logic := ’07;

signal LOAD : std_logic := ’'1’;

signal EN : std_logic := ’07;

—Outputs

signal MOUT : std_logic_vector (7 downto 0);

— Clock period definitions
constant CLK_period : time := 10 ns;

BEGIN

— Instantiate the Unit Under Test (UUT)
uut: encryptor PORT MAP (
SEED => SEED,
MIN => MIN,
MOUT => MOUT,
CLK => CLK,
LOAD => LOAD,
EN => EN
)

—— Clock process definitions
CLK_process :process

begin

CIK <= '07;

wait for CLK_period/2;
CLK <= '17;

wait for CLK_period/2;
end process;

— Stimulus process
stim_proc: process
begin
—— hold reset state for 100 ns.

81

N

[oM oMo Fye oMy R o}

wait for 100 ns;
wait for CLK_period=10;
— insert stimulus here
SEED <= x"FF”;
wait for 10 ns;

EN <= ’1°;
SEED <= x” 347 ;

wait for 10 ns;

LOAD <= ’0’;
MIN <= x”67";

wait for 10 ns;
MIN <= x”6A” ;
wait for 10 ns;
MIN <= x"D1”;
wait for 10 ns;
EN <= ’07;

wait ;
end process;

END;

encryptor_test.vhd

5 Postlab

The decoded sequence reads “Hello from the ECE department.”

encoded becomes 5B 59 4C F5 AA 25 73. Forwarding the LFSR three states

forwards gives:

xnor q(0) xnor q(1) xnor q(2);

)
)
é xnor q(0) xnor q(1l) xnor q(2);
g xnor q(0) xnor q(1);

snip.vhd

6 Conclusions

The purpose of this lab was achieved. A LFSR based FPGA encryptor was
built and tested. Operation was verified through simulation.

