Experiment No. 5
Barrel Shifter
ECE 446

Peter CHINETTI

September 29, 2014

Date Performed: September 21, 2014
Instructor: Professor Shanechi

1 Introduction

Data shifting circuits are of critical importance in CPU design. They are
useful for bit-mask manipulation and various other operations that would be
cumbersome using other mathematical functions. When designing and building
a barrel shifter, there are several functional specifications that must be consid-
ered. For instance, will the shifter move data to the left or to the right? More
often than not, in order to allow the shifter circuit to be general purpose, it
should support both left and right shifts of the data with which it is supplied,
based upon some selection input setting. Another issue that must be consid-
ered when designing a shifter is what type of shift operation will be performed.
When a logical shift circuit moves data left or right, the data shifted out of
the range of the data storage element is dropped. In addition, the empty space
created in the storage element with each bit shift is filled with a pre-determined,
or runtime specified, bit value that is typically zero. This type of operation is
most often useful for bit-mask manipulations.

A circular shift circuit behaves similarly to the logical shift circuit; however,
bits that are shifted out of one end of the storage element are fed back into
the other end as inputs. This allows all of the original data to be kept, even
though it is moved around. Circular shift functionality is useful for certain
bit manipulations that may or may not use masks. Finally, arithmetic shift
functionality is set up to achieve very low cost multiplications or divisions by
powers of two. To achieve this, a left shift operation will input zeros into the
newly vacated LSBs of the data storage element. A right shift operation, on the
other hand, will replicate the sign bit of the original data into the MSBs of the
data storage element that are emptied during the shift operation. This is the
type of shifting circuit that will be designed and implemented in this laboratory.

19

A final consideration when designing shifting circuits is the amount of shift
the circuit will support. A single bit shifting circuit, while simple to design,
will not be terribly useful, as multi-bit shift operations will require the data to
be fed through the shifter several times. A shifter that will handle a variety of
different shift amounts will be more complicated to design, but will ultimately
be more useful.

2 Procedure

a. Write VHDL to implement encoder/decoder logic.

o

. Assign pins to ports
c. Simulate

d. Program and Test

3 Equipment
e PC

e Spartan-3E development board

4 Code
4.1 Top-level Module

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity Shifter is
Port (i : in STDLOGICVECTOR (7 downto 0);
os : out STDLOGIC.VECTOR (7 downto 0);
sh : in STDLOGIC.VECTOR (2 downto 0);
d : in STD.LOGIC);
end Shifter;

architecture Behavioral of Shifter is

signal 1.0, 1.1, 1.2, r.0, r_1, r_2 : STDLOGIC.VECTOR (7 downto
0);
signal z : STD_LOGIC;

component Mux
Port (a : in STDLOGIC.VECTOR (7 downto 0);
b : in STDLOGIC.VECTOR (7 downto 0);
s : in STD_LOGIC;
o : out STDLOGIC.VECTOR (7 downto 0));
end component ;

23| begin
25 z <= '07;
27 —shift left by 1

29 mux_1_1: Mux

port map(

31 a(7 downto 1) => i(6 downto 0),
a(0) = 07,

33 b =1,

s => sh(0),

35 o=>1.0

)

mux_1_2: Mux

30| port map(

a(7 downto 2) => 1.0(5 downto 0),
sala(l) = 07,

a(0) = 07,

as|b => 1.0,

s => sh(1),

1510 => 1.1

mux_-1_4: Mux
19 port map(
a(7 downto 4) => 1.1(3 downto 0),
51 a(3 downto 0) => 70000”,
b =11,
53 s => sh(2),
o => 1.2
550)5

57| mux_r_1: Mux

port map(

sola(6 downto 0) => i(7 downto 1),
a(7) = i(7),

61|b = 1,
s => sh(0),
63lo => r_0
);

mux_r_2: Mux

67 port map(

a(5 downto 0) => r_0(7 downto 2),
69 a(7) = r_0(7),

a(6) = r.0(7),

71 b= r.0,

s => sh(1),

73 o=>r_1

)

mux._r_4: Mux

77| port map(

a(3 downto 0) => r_1(7 downto 4),
ola(7) = r.1(7),

— 1(
81 a(5) = r71(7
r_1(

a

91 b= 1.2,
S
[¢]

end Behavioral;

Barrel_Shifter_better/Shifter.vhd

4.2 Mux

1| library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity Mux is

5 Port (A : in STDLOGIC.VECTOR(7 downto 0);
: in STD_LOGIC_.VECTOR(7 downto 0);

in STD_LOGIC;

out STDLOGIC.VECTOR(7 downto 0));

Ownw

9| end Mux;

11| architecture arch_mux of Mux is

13| begin
15 process (S,A,B)
begin
if S = "0’ then
19 O <= A;
elsif S = "1’ then
21 O <= B;
end if;

23 end process;
end arch_mux;

Barrel_Shifter_better/Mux.vhd

4.3 Shifter Test

1| LIBRARY ieee;
USE ieee.std_-logic_-1164 .ALL;

9

11

39

ENTITY shifter_test IS
END shifter_test;

ARCHITECTURE behavior OF shifter_test IS
— Component Declaration for the Unit Under Test (UUT)

COMPONENT Shifter

PORT(
i : IN std_logic_vector (7 downto 0);
os : OUT std_-logic_vector (7 downto 0);
sh : IN std_logic_-vector (2 downto 0);
d : IN std_logic
)5
END COMPONENT
—Inputs
signal i : std-logic_-vector (7 downto 0) := (others => ’07);
signal sh : std_logic_vector (2 downto 0) := (others => ’0’);
signal d : std-logic := ’07;
—Outputs
signal os : std_logic_vector (7 downto 0);
BEGIN
— Instantiate the Unit Under Test (UUT)
uut: Shifter PORT MAP (
i=1i,
0os => o0s,
sh => sh,
d=d
)i
— Stimulus process
stim_proc: process
begin
—— hold reset state for 100 ns.

wait for 10 ns;
d <= "1

sh <= 71117,
i<=7111111117;
wait for 10 ns;
sh <= 71107 ;
wait for 10 ns;

sh <= 71017

wait for 10 ns;

61

69

N}

10

16

sh <= 70117

wait for 10 ns;

sh <= 71117
i <= 7011111117;
d <= 0;

wait for 10 ns;
sh <= 71107
wait for 10 ns;
sh <= 71017 ;
wait for 10 ns;
sh <= 70117
wait ;
end process;

END;

Barrel_Shifter_better /shifter_test.vhd

4.4 Mux Test

LIBRARY ieee;
USE ieee.std_-logic_-1164 .ALL;

ENTITY mux_test IS
END mux_test;

ARCHITECTURE behavior OF mux_-test IS
— Component Declaration for the Unit Under Test

COMPONENT' Mux
PORT(
A : IN std_-logic;
B : IN std_logic;
S : IN std-logic;
O : OUT std-logic
)5
END COMPONENT}

—Inputs

signal A : std_logic := ’07;
signal B : std_logic = ’0’;
signal S : std_logic := ’07;

26 —OQutputs
signal O : std_logic;

BEGIN
30
— Instantiate the Unit Under Test (UUT)
32 uut: Mux PORT MAP (

= A,

=> B,

= S,

= 0

Ownwx

)5

— Stimulus process

10 stim_proc: process

begin

12 — hold reset state for 100 ns.
wait for 100 ns;

44
A<: 71 7;
46
wait for 100 ns;

S<= 17
50
wait for 100 ns;
B<= "17;

wait for 100 ns;
A<= 0",

wait for 100 ns;
60
A<= 17,

64 wait for 100 ns;

66 S <= 07

68 — insert stimulus here

70 wait ;
end process;

END;

Barrel_Shifter_better/mux_test.vhd

5 Conclusions

The purpose of this lab was achieved. A barrel shifter was built and tested.
Operation was verified through simulation and physical implementation.

