Experiment No. 12
Successive Approximation A/D Converter
ECE 446

Peter CHINETTI

December 4, 2014

Instructor: Professor Shanechi

1 Introduction

When working with real world signals, it is useful to be able to sample voltage
levels. In this lab, the design of the Analog to Digital Converter is improved
and implemented.

The translation is done with a DAC and a comparator. The sample voltage
is held to one end of the comparator, and the DAC is tied into the other side.
Each bit (starting with the MSB) in the DAC is set, the comparator output is
tested, and unset if the signal goes too high.

This algorithm improves the two problems with the previous design. It takes
time proportional to the logartithm of the number of output state, and it takes
constant time to preform for all inputs. The only situation where this design
performs more poorly than the original design is when the input voltage is lower
than 4 DAC divisions.

2 Pre-Lab Questions

2.1
Start
Y
Input . > Done

Output
Voltage

8 bit wide 8 bit vector

DAC input

DAC
Resistor bridge

2.2

2.3

Maximum error occurs when the input is very close to, but slightly less than,
one of the DAC’s output voltage. In that case, the voltage gets rounded down
to the voltage below. This corresponds to (at the limit) an error of ;—/5 For a
V.. =5V and n = 4, the maximum error is 0.3125 volts.

3 Procedure

a. Build resistor net and comparator circuit
b. Write VHDL to implement ADC
c. Assign pins to ports

d. Simulate

e. Program and Test

4 Equipment

e PC

Spartan-3E development board

Op-Amp

Assorted resistors and diodes

Breadboard

5 Code

5.1 Top-Level Module

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity sar_fsm is
Port (start : in STD_LOGIC;

en : in STD_LOGIC;
dac_out : out STDLOGIC.VECTOR (3 downto 0);
result : out STDLOGIC.VECTOR (3 downto 0);
done_out : out STD_LOGIC;
clk_in : in STD_LOGIC);

end sar_fsm;

architecture Behavioral of sar_fsm is

type state is (DONE, COMP.B3, SET_B2, COMP.B2, SET.Bl, COMP.BI,

SET_B0, COMP_BO) ;
signal p, f : state;
signal d, q : STDLOGIC.VECTOR (3 downto 0);
signal clk_i : STD_LOGIC;

component selectable_clock is
Port (clk : in std_logic;

sO : in std_-logic;

sl : in std_logic;

out_clk : out std_logic);
end component;

begin
div : selectable_clock
port map(
clk => clk_in ,
sO0 = 17,
sl = 17,

out_clk => clk_i);

dac_out <= q;

35 result <= q;

37 process (clk_i)
begin
39 if rising_edge(clk_i) then
p <= f;
41 q <= d;
end if;
13 end process;

15 process (p, en, start, q)
begin

17 case p is

when DONE =>

19 if start = ’0’ then
d <= q;

51 f <= DONE;
done_out <= ’'17;
53 else

f <= COMPB3;

55 d <= 710007 ;
done_out <= 07
57 end if;

when COMPB3 =>

59 f <= SET_B2;
done_out <= ’0’;

61 if en = ’0’ then
—d(3) <= '07;

63 d <= q and 701117
else

65 d <= q;

end if;

67 when SET_B2 =>

f <= COMP_B2;

69 done_out <= ’0’;
—d(2) <= '17;

71 d <= q or 701007;
when COMPB2 =>

73 f <= SET_B1;
done_out <= ’0’;
75 if en = ’0’ then
—d(2) <= 07;
77 d <= q and 710117
else
79 d <= q;
end if;
81 when SET_B1 =>
f <= COMP_BI1;
83 done_out <= ’0’;
—d(1) <= ’17;
85 d <= q or 700107
when COMPB1 =>
87 f <= SET_BO;
done_out <= '07;
89 if en = ’0’ then
—d (1) <= '07;

91 d <= q and 711017

93

99

101

103

105

107

109

111

else
d <= q;

end if;
when SET_B0 =>

f <= COMP_BO;

done_out <= ’0’;

—d(0) <= "1

d <= q or 700017
when COMP_B0O =>

f <= DONE;
done_out <= ’0’;
if en = 0’ then
—d(0) <= '07;
d <= q and 711107
else
d <= q;
end if;

end case;
end process;
end Behavioral;

sar_fsm.vhd

6 Scope Trace

Edge Trigger Menu
O Source
2

7 Conclusions

The purpose of this lab was achieved. An improved ADC was built and tested.
Operation was verified through simulation and physical implementation.

