
2-1

2. VHDL is Like a Programming Language

As mentioned in Section�1.2, the behaviour of a module may be described
in programming language form. This chapter describes the facilities in
VHDL which are drawn from the familiar programming language
repertoire. If you are familiar with the Ada programming language, you
will notice the similarity with that language. This is both a convenience
and a nuisance. The convenience is that you don’t have much to learn to
use these VHDL facilities. The problem is that the facilities are not as
comprehensive as those of Ada, though they are certainly adequate for most
modeling purposes.

2.1. Lexical Elements

2.1.1. Comments
Comments in VHDL start with two adjacent hyphens (‘--’) and extend to

the end of the line. They have no part in the meaning of a VHDL
description.

2.1.2. Identifiers
Identifiers in VHDL are used as reserved words and as programmer

defined names. They must conform to the rule:
identifier ::= letter { [underline] letter_or_digit }

Note that case of letters is not considered significant, so the identifiers cat
and Cat are the same. Underline characters in identifiers are significant,
so This_Name and ThisName are different identifiers.

2.1.3. Numbers
Literal numbers may be expressed either in decimal or in a base

between two and sixteen. If the literal includes a point, it represents a real
number, otherwise it represents an integer. Decimal literals are defined
by:

decimal_literal ::= integer [. integer] [exponent]
integer ::= digit { [underline] digit }
exponent ::= E [+] integer | E - integer

Some examples are:
0 1 123_456_789 987E6 -- integer literals

0.0 0.5 2.718_28 12.4E-9 -- real literals

Based literal numbers are defined by:
based_literal ::= base # based_integer [. based_integer] # [exponent]
base ::= integer
based_integer ::= extended_digit { [underline] extended_digit }

2-2 The VHDL Cookbook

extended_digit ::= digit | letter

The base and the exponent are expressed in decimal. The exponent
indicates the power of the base by which the literal is multiplied. The
letters A to F (upper or lower case) are used as extended digits to represent
10 to 15. Some examples:

2#1100_0100# 16#C4# 4#301#E1 -- the integer 196

2#1.1111_1111_111#E+11 16#F.FF#E2 -- the real number 4095.0

2.1.4. Characters
Literal characters are formed by enclosing an ASCII character in

single-quote marks. For example:
'A' '*' ''' ' '

2.1.5. Strings
Literal strings of characters are formed by enclosing the characters in

double-quote marks. To include a double-quote mark itself in a string, a
pair of double-quote marks must be put together. A string can be used as a
value for an object which is an array of characters. Examples of strings:

"A string"
"" -- empty string
"A string in a string: ""A string"". " -- contains quote marks

2.1.6. Bit Strings
VHDL provides a convenient way of specifying literal values for arrays of

type bit ('0's and '1's, see Section�2.2.5). The syntax is:
bit_string_literal ::= base_specifier " bit_value "
base_specifier ::= B | O | X
bit_value ::= extended_digit { [underline] extended_digit }

Base specifier B stands for binary, O for octal and X for hexadecimal. Some
examples:

B"1010110" -- length is 7
O"126" -- length is 9, equivalent to B"001_010_110"
X"56" -- length is 8, equivalent to B"0101_0110"

2.2. Data Types and Objects
VHDL provides a number of basic, or scalar, types, and a means of

forming composite types. The scalar types include numbers, physical
quantities, and enumerations (including enumerations of characters), and
there are a number of standard predefined basic types. The composite types
provided are arrays and records. VHDL also provides access types
(pointers) and files, although these will not be fully described in this booklet.

A data type can be defined by a type declaration:
full_type_declaration ::= type identifier is type_definition ;
type_definition ::=

scalar_type_definition
| composite_type_definition
| access_type_definition
| file_type_definition

scalar_type_definition ::=
enumeration_type_definition | integer_type_definition
| floating_type_definition | physical_type_definition

2. VHDL is Like a Programming Language 2-3

composite_type_definition ::=
array_type_definition
| record_type_definition

Examples of different kinds of type declarations are given in the following
sections.

2.2.1. Integer Types
An integer type is a range of integer values within a specified range.

The syntax for specifying integer types is:
integer_type_definition ::= range_constraint
range_constraint ::= range range
range ::= simple_expression direction simple_expression
direction ::= to | downto

The expressions that specify the range must of course evaluate to integer
numbers. Types declared with the keyword to are called ascending ranges,
and those declared with the keyword downto are called descending ranges.
The VHDL standard allows an implementation to restrict the range, but
requires that it must at least allow the range –2147483647 to +2147483647.

Some examples of integer type declarations:
type byte_int is range 0 to 255;

type signed_word_int is range –32768 to 32767;

type bit_index is range 31 downto 0;

There is a predefined integer type called integer. The range of this type is
implementation defined, though it is guaranteed to include –2147483647 to
+2147483647.

2.2.2. Physical Types
A physical type is a numeric type for representing some physical

quantity, such as mass, length, time or voltage. The declaration of a
physical type includes the specification of a base unit, and possibly a
number of secondary units, being multiples of the base unit. The syntax for
declaring physical types is:

physical_type_definition ::=
range_constraint

units
base_unit_declaration
{ secondary_unit_declaration }

end units
base_unit_declaration ::= identifier ;
secondary_unit_declaration ::= identifier = physical_literal ;
physical_literal ::= [abstract_literal] unit_name

Some examples of physical type declarations:

2-4 The VHDL Cookbook

type length is range 0 to 1E9
units

um;
mm = 1000 um;
cm = 10 mm;
m = 1000 mm;
in = 25.4 mm;
ft = 12 in;
yd = 3 ft;
rod = 198 in;
chain = 22 yd;
furlong = 10 chain;

end units;

type resistance is range 0 to 1E8
units

ohms;
kohms = 1000 ohms;
Mohms = 1E6 ohms;

end units;

The predefined physical type time is important in VHDL, as it is used
extensively to specify delays in simulations. Its definition is:

type time is range implementation_defined
units

fs;
ps = 1000 fs;
ns = 1000 ps;
us = 1000 ns;
ms = 1000 us;
sec = 1000 ms;
min = 60 sec;
hr = 60 min;

end units;

To write a value of some physical type, you write the number followed by
the unit. For example:

10 mm 1 rod 1200 ohm 23 ns

2.2.3. Floating Point Types
A floating point type is a discrete approximation to the set of real

numbers in a specified range. The precision of the approximation is not
defined by the VHDL language standard, but must be at least six decimal
digits. The range must include at least –1E38 to +1E38. A floating point
type is declared using the syntax:

floating_type_definition := range_constraint

Some examples are:
type signal_level is range –10.00 to +10.00;

type probability is range 0.0 to 1.0;

There is a predefined floating point type called real. The range of this
type is implementation defined, though it is guaranteed to include –1E38 to
+1E38.

2.2.4. Enumeration Types
An enumeration type is an ordered set of identifiers or characters. The

identifiers and characters within a single enumeration type must be
distinct, however they may be reused in several different enumeration
types.

2. VHDL is Like a Programming Language 2-5

The syntax for declaring an enumeration type is:
enumeration_type_definition ::= (enumeration_literal { , enumeration_literal })
enumeration_literal ::= identifier | character_literal

Some examples are:
type logic_level is (unknown, low, undriven, high);

type alu_function is (disable, pass, add, subtract, multiply, divide);

type octal_digit is ('0', '1', '2', '3', '4', '5', '6', '7');

There are a number of predefined enumeration types, defined as follows:
type severity_level is (note, warning, error, failure);

type boolean is (false, true);

type bit is ('0', '1');

type character is (
NUL, SOH, STX, ETX, EOT, ENQ, ACK, BEL,
BS, HT, LF, VT, FF, CR, SO, SI,
DLE, DC1, DC2, DC3, DC4, NAK, SYN, ETB,
CAN, EM, SUB, ESC, FSP, GSP, RSP, USP,
' ', '!', '"', '#', '$', '%', '&', ''',
'(', ')', '*', '+', ',', '-', '.', '/',
'0', '1', '2', '3', '4', '5', '6', '7',
'8', '9', ':', ';', '<', '=', '>', '?',
'@', 'A', 'B', 'C', 'D', 'E', 'F', 'G',
'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O',
'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W',
'X', 'Y', 'Z', '[', '\', ']', '̂ ', '_',
'`', 'a', 'b', 'c', 'd', 'e', 'f', 'g',
'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o',
'p', 'q', 'r', 's', 't', 'u', 'v', 'w',
'x', 'y', 'z', '{', '|', '}', '~', DEL);

Note that type character is an example of an enumeration type containing a
mixture of identifiers and characters. Also, the characters '0' and '1' are
members of both bit and character . Where '0' or '1' occur in a program, the
context will be used to determine which type is being used.

2.2.5. Arrays
An array in VHDL is an indexed collection of elements all of the same

type. Arrays may be one-dimensional (with one index) or multi-
dimensional (with a number of indices). In addition, an array type may be
constrained, in which the bounds for an index are established when the
type is defined, or unconstrained, in which the bounds are established
subsequently.

The syntax for declaring an array type is:
array_type_definition ::=

unconstrained_array_definition | constrained_array_definition
unconstrained_array_definition ::=

array (index_subtype_definition { , index_subtype_definition })
of element_subtype_indication

constrained_array_definition ::=
array index_constraint of element_subtype_indication

index_subtype_definition ::= type_mark range <>
index_constraint ::= (discrete_range { , discrete_range })
discrete_range ::= discrete_subtype_indication | range

2-6 The VHDL Cookbook

Subtypes, referred to in this syntax specification, will be discussed in detail
in Section�2.2.7.

Some examples of constrained array type declarations:
type word is array (31 downto 0) of bit;

type memory is array (address) of word;

type transform is array (1 to 4, 1 to 4) of real;

type register_bank is array (byte range 0 to 132) of integer;

An example of an unconstrained array type declaration:
type vector is array (integer range <>) of real;

The symbol ‘<>’ (called a box) can be thought of as a place-holder for the
index range, which will be filled in later when the array type is used. For
example, an object might be declared to be a vector of 20 elements by giving
its type as:

vector(1 to 20)

There are two predefined array types, both of which are unconstrained.
They are defined as:

type string is array (positive range <>) of character;

type bit_vector is array (natural range <>) of bit;

The types positive and natural are subtypes of integer, defined in Section�2.2.7
below. The type bit_vector is particularly useful in modeling binary coded
representations of values in simulations of digital systems.

An element of an array object can referred to by indexing the name of
the object. For example, suppose a and b are one- and two-dimensional
array objects respectively. Then the indexed names a(1) and b(1, 1) refer to
elements of these arrays. Furthermore, a contiguous slice of a one-
dimensional array can be referred to by using a range as an index. For
example a(8 to 15) is an eight-element array which is part of the array a.

Sometimes you may need to write a literal value of an array type. This
can be done using an array aggregate, which is a list of element values.
Suppose we have an array type declared as:

type a is array (1 to 4) of character;

and we want to write a value of this type containing the elements 'f', 'o', 'o',
'd' in that order. We could write an aggregate with positional association
as follows:

('f', 'o', 'o', 'd')

in which the elements are listed in the order of the index range, starting
with the left bound of the range. Alternatively, we could write an aggregate
with named association:

(1 => 'f', 3 => 'o', 4 => 'd', 2 => 'o')

In this case, the index for each element is explicitly given, so the elements
can be in any order. Positional and named association can be mixed within
an aggregate, provided all the positional associations come first. Also, the
word others can be used in place of an index in a named association,
indicating a value to be used for all elements not explicitly mentioned. For
example, the same value as above could be written as:

('f', 4 => 'd', others => 'o')

2. VHDL is Like a Programming Language 2-7

2.2.6. Records
VHDL provides basic facilities for records, which are collections of

named elements of possibly different types. The syntax for declaring record
types is:

record_type_definition ::=
record

element_declaration
{ element_declaration }

end record
element_declaration ::= identifier_list : element_subtype_definition ;
identifier_list ::= identifier { , identifier)
element_subtype_definition ::= subtype_indication

An example record type declaration:
type instruction is

record
op_code : processor_op;
address_mode : mode;
operand1, operand2: integer range 0 to 15;

end record;

When you need to refer to a field of a record object, you use a selected
name. For example, suppose that r is a record object containing a field
called f. Then the name r.f refers to that field.

As for arrays, aggregates can be used to write literal values for records.
Both positional and named association can be used, and the same rules
apply, with record field names being used in place of array index names.

2.2.7. Subtypes
The use of a subtype allows the values taken on by an object to be

restricted or constrained subset of some base type. The syntax for declaring
a subtype is:

subtype_declaration ::= subtype identifier is subtype_indication ;
subtype_indication ::= [resolution_function_name] type_mark [constraint]
type_mark ::= type_name | subtype_name
constraint ::= range_constraint | index_constraint

There are two cases of subtypes. Firstly a subtype may constrain values
from a scalar type to be within a specified range (a range constraint). For
example:

subtype pin_count is integer range 0 to 400;

subtype digits is character range '0' to '9';

Secondly, a subtype may constrain an otherwise unconstrained array
type by specifying bounds for the indices. For example:

subtype id is string(1 to 20);

subtype word is bit_vector(31 downto 0);

There are two predefined numeric subtypes, defined as:
subtype natural is integer range 0 to highest_integer

subtype positive is integer range 1 to highest_integer

2-8 The VHDL Cookbook

2.2.8. Object Declarations
An object is a named item in a VHDL description which has a value of a

specified type. There are three classes of objects: constants, variables and
signals. Only the first two will be discusses in this section; signals will be
covered in Section�3.2.1. Declaration and use of constants and variables is
very much like their use in programming languages.

A constant is an object which is initialised to a specified value when it is
created, and which may not be subsequently modified. The syntax of a
constant declaration is:

constant_declaration ::=
constant identifier_list : subtype_indication [:= expression] ;

Constant declarations with the initialising expression missing are called
deferred constants, and may only appear in package declarations (see
Section�2.5.3). The initial value must be given in the corresponding package
body. Some examples:

constant e : real := 2.71828;

constant delay : Time := 5 ns;

constant max_size : natural;

A variable is an object whose value may be changed after it is created.
The syntax for declaring variables is:

variable_declaration ::=
variable identifier_list : subtype_indication [:= expression] ;

The initial value expression, if present, is evaluated and assigned to the
variable when it is created. If the expression is absent, a default value is
assigned when the variable is created. The default value for scalar types is
the leftmost value for the type, that is the first in the list of an enumeration
type, the lowest in an ascending range, or the highest in a descending
range. If the variable is a composite type, the default value is the
composition of the default values for each element, based on the element
types.

Some examples of variable declarations:
variable count : natural := 0;

variable trace : trace_array;

Assuming the type trace_array is an array of boolean, then the initial value of
the variable trace is an array with all elements having the value false.

Given an existing object, it is possible to give an alternate name to the
object or part of it. This is done using and alias declaration. The syntax is:

alias_declaration ::= alias identifier : subtype_indication is name ;

A reference to an alias is interpreted as a reference to the object or part
corresponding to the alias. For example:

variable instr : bit_vector(31 downto 0);

alias op_code : bit_vector(7 downto 0) is instr(31 downto 24);

declares the name op_code to be an alias for the left-most eight bits of instr.

2.2.9. Attributes
Types and objects declared in a VHDL description can have additional

information, called attributes, associated with them. There are a number
of standard pre-defined attributes, and some of those for types and arrays

2. VHDL is Like a Programming Language 2-9

are discussed here. An attribute is referenced using the ‘'’ notation. For
example,

thing'attr

refers to the attribute attr of the type or object thing.
Firstly, for any scalar type or subtype T, the following attributes can be

used:
Attribute Result
T'left Left bound of T
T'right Right bound of T
T'low Lower bound of T
T'high Upper bound of T

For an ascending range, T'left = T'low, and T'right = T'high. For a
descending range, T'left = T'high, and T'right = T'low.

Secondly, for any discrete or physical type or subtype T, X a member of T,
and N an integer, the following attributes can be used:

Attribute Result
T'pos(X) Position number of X in T
T'val(N) Value at position N in T
T'leftof(X) Value in T which is one position left from X
T'rightof(X) Value in T which is one position right from X
T'pred(X) Value in T which is one position lower than X
T'succ(X) Value in T which is one position higher than X

For an ascending range, T'leftof(X) = T'pred(X), and T'rightof(X) =
T'succ(X). For a descending range, T'leftof(X) = T'succ(X), and T'rightof(X)
= T'pred(X).

Thirdly, for any array type or object A, and N an integer between 1 and
the number of dimensions of A, the following attributes can be used:

Attribute Result
A'left(N) Left bound of index range of dim’n N of A
A'right(N) Right bound of index range of dim’n N of A
A'low(N) Lower bound of index range of dim’n N of A
A'high(N) Upper bound of index range of dim’n N of A
A'range(N) Index range of dim’n N of A
A'reverse_range(N) Reverse of index range of dim’n N of A
A'length(N) Length of index range of dim’n N of A

2.3. Expressions and Operators
Expressions in VHDL are much like expressions in other programming

languages. An expression is a formula combining primaries with
operators. Primaries include names of objects, literals, function calls and
parenthesized expressions. Operators are listed in Table�2-1 in order of
decreasing precedence.

The logical operators and, or, nand, nor, xor and not operate on values of
type bit or boolean, and also on one-dimensional arrays of these types. For
array operands, the operation is applied between corresponding elements of
each array, yielding an array of the same length as the result. For bit and

2-10 The VHDL Cookbook

Highest precedence: ** abs not

* / mod rem

+ (sign) – (sign)
+ – &
= /= < <= > >=

Lowest precedence: and or nand nor xor

Table�7-1. Operators and precedence.

boolean operands, and, or, nand, and nor are ‘short-circuit’ operators, that
is they only evaluate their right operand if the left operand does not
determine the result. So and and nand only evaluate the right operand if
the left operand is true or '1', and or and nor only evaluate the right
operand if the left operand is false or '0'.

The relational operators =, /=, <, <=, > and >= must have both operands
of the same type, and yield boolean results. The equality operators (= and /=)
can have operands of any type. For composite types, two values are equal if
all of their corresponding elements are equal. The remaining operators
must have operands which are scalar types or one-dimensional arrays of
discrete types.

The sign operators (+ and –) and the addition (+) and subtraction (–)
operators have their usual meaning on numeric operands. The
concatenation operator (&) operates on one-dimensional arrays to form a
new array with the contents of the right operand following the contents of
the left operand. It can also concatenate a single new element to an array,
or two individual elements to form an array. The concatenation operator is
most commonly used with strings.

The multiplication (*) and division (/) operators work on integer, floating
point and physical types types. The modulus (mod) and remainder (rem)
operators only work on integer types. The absolute value (abs) operator
works on any numeric type. Finally, the exponentiation (**) operator can
have an integer or floating point left operand, but must have an integer
right operand. A negative right operand is only allowed if the left operand
is a floating point number.

2.4. Sequential Statements
VHDL contains a number of facilities for modifying the state of objects

and controlling the flow of execution of models. These are discussed in this
section.

2.4.1. Variable Assignment
As in other programming languages, a variable is given a new value

using an assignment statement. The syntax is:
variable_assignment_statement ::= target := expression ;
target ::= name | aggregate

In the simplest case, the target of the assignment is an object name, and
the value of the expression is given to the named object. The object and the
value must have the same base type.

2. VHDL is Like a Programming Language 2-11

If the target of the assignment is an aggregate, then the elements listed
must be object names, and the value of the expression must be a composite
value of the same type as the aggregate. Firstly, all the names in the
aggregate are evaluated, then the expression is evaluated, and lastly the
components of the expression value are assigned to the named variables.
This is effectively a parallel assignment. For example, if a variable r is a
record with two fields a and b, then they could be exchanged by writing

(a => r.b, b => r.a) := r

(Note that this is an example to illustrate how such an assignment works;
it is not an example of good programming practice!)

2.4.2. If Statement
The if statement allows selection of statements to execute depending on

one or more conditions. The syntax is:
if_statement ::=

if condition then
sequence_of_statements

{ elsif condition then
sequence_of_statements }

[else
sequence_of_statements]

end if ;

The conditions are expressions resulting in boolean values. The
conditions are evaluated successively until one found that yields the value
true. In that case the corresponding statement list is executed. Otherwise,
if the else clause is present, its statement list is executed.

2.4.3. Case Statement
The case statement allows selection of statements to execute depending

on the value of a selection expression. The syntax is:
case_statement ::=

case expression is
case_statement_alternative
{ case_statement_alternative }

end case ;
case_statement_alternative ::=

when choices =>
sequence_of_statements

choices ::= choice { | choice }
choice ::=

simple_expression
| discrete_range
| element_simple_name
| others

The selection expression must result in either a discrete type, or a one-
dimensional array of characters. The alternative whose choice list
includes the value of the expression is selected and the statement list
executed. Note that all the choices must be distinct, that is, no value may be
duplicated. Furthermore, all values must be represented in the choice
lists, or the special choice others must be included as the last alternative. If
no choice list includes the value of the expression, the others alternative is
selected. If the expression results in an array, then the choices may be
strings or bit strings.

2-12 The VHDL Cookbook

Some examples of case statements:
case element_colour of

when red =>
statements for red;

when green | blue =>
statements for green or blue;

when orange to turquoise =>
statements for these colours;

end case;

case opcode of
when X"00" => perform_add;
when X"01" => perform_subtract;
when others => signal_illegal_opcode;

end case;

2.4.4. Loop Statements
VHDL has a basic loop statement, which can be augmented to form the

usual while and for loops seen in other programming languages. The
syntax of the loop statement is:

loop_statement ::=
[loop_label :]

[iteration_scheme] loop
sequence_of_statements

end loop [loop_label] ;
iteration_scheme ::=

while condition
| for loop_parameter_specification

parameter_specification ::=
identifier in discrete_range

If the iteration scheme is omitted, we get a loop which will repeat the
enclosed statements indefinitely. An example of such a basic loop is:

loop
do_something;

end loop;

The while iteration scheme allows a test condition to be evaluated before
each iteration. The iteration only proceeds if the test evaluates to true. If
the test is false, the loop statement terminates. An example:

while index < length and str(index) /= ' ' loop
index := index + 1;

end loop;

The for iteration scheme allows a specified number of iterations. The
loop parameter specification declares an object which takes on successive
values from the given range for each iteration of the loop. Within the
statements enclosed in the loop, the object is treated as a constant, and so
may not be assigned to. The object does not exist beyond execution of the
loop statement. An example:

for item in 1 to last_item loop
table(item) := 0;

end loop;

There are two additional statements which can be used inside a loop to
modify the basic pattern of iteration. The ‘next’ statement terminates
execution of the current iteration and starts the subsequent iteration. The

2. VHDL is Like a Programming Language 2-13

‘exit’ statement terminates execution of the current iteration and
terminates the loop. The syntax of these statements is:

next_statement ::= next [loop_label] [when condition] ;
exit_statement ::= exit [loop_label] [when condition] ;

If the loop label is omitted, the statement applies to the inner-most
enclosing loop, otherwise it applies to the named loop. If the when clause is
present but the condition is false, the iteration continues normally. Some
examples:

for i in 1 to max_str_len loop
a(i) := buf(i);
exit when buf(i) = NUL;

end loop;

outer_loop : loop
inner_loop : loop

do_something;
next outer_loop when temp = 0;
do_something_else;

end loop inner_loop;
end loop outer_loop;

2.4.5. Null Statement
The null statement has no effect. It may be used to explicitly show that

no action is required in certain cases. It is most often used in case
statements, where all possible values of the selection expression must be
listed as choices, but for some choices no action is required. For example:

case controller_command is
when forward => engage_motor_forward;
when reverse => engage_motor_reverse;
when idle => null;

end case;

2.4.6. Assertions
An assertion statement is used to verify a specified condition and to

report if the condition is violated. The syntax is:
assertion_statement ::=

assert condition
[report expression]
[severity expression] ;

If the report clause is present, the result of the expression must be a string.
This is a message which will be reported if the condition is false. If it is
omitted, the default message is "Assertion violation". If the severity clause
is present the expression must be of the type severity_level. If it is omitted,
the default is error. A simulator may terminate execution if an assertion
violation occurs and the severity value is greater than some
implementation dependent threshold. Usually the threshold will be under
user control.

2.5. Subprograms and Packages
Like other programming languages, VHDL provides subprogram

facilities in the form of procedures and functions. VHDL also provided a
package facility for collecting declarations and objects into modular units.
Packages also provide a measure of data abstraction and information
hiding.

2-14 The VHDL Cookbook

2.5.1. Procedures and Functions
Procedure and function subprograms are declared using the syntax:

subprogram_declaration ::= subprogram_specification ;
subprogram_specification ::=

procedure designator [(formal_parameter_list)]
| function designator [(formal_parameter_list)] return type_mark

A subprogram declaration in this form simply names the subprogram and
specifies the parameters required. The body of statements defining the
behaviour of the subprogram is deferred. For function subprograms, the
declaration also specifies the type of the result returned when the function
is called. This form of subprogram declaration is typically used in package
specifications (see Section 2.5.3), where the subprogram body is given in the
package body, or to define mutually recursive procedures.

The syntax for specifying the formal parameters of a subprogram is:
formal_parameter_list ::= parameter_interface_list
interface_list ::= interface_element { ; interface_element }
interface_element ::= interface_declaration
interface_declaration ::=

interface_constant_declaration
| interface_signal_declaration
| interface_variable_declaration

interface_constant_declaration ::=
[constant] identifier_list : [in] subtype_indication [:= static_expression]

interface_variable_declaration ::=
[variable] identifier_list : [mode] subtype_indication [:= static_expression]

For now we will only consider constant and variable parameters, although
signals can also be used�(see Chapter�3). Some examples will clarify this
syntax. Firstly, a simple example of a procedure with no parameters:

procedure reset;

This simply defines reset as a procedure with no parameters, whose
statement body will be given subsequently in the VHDL program. A
procedure call to reset would be:

reset;

Secondly, here is a declaration of a procedure with some parameters:
procedure increment_reg(variable reg : inout word_32;

constant incr : in integer := 1);

In this example, the procedure increment_reg has two parameters, the
first called reg and the second called incr. Reg is a variable parameter,
which means that in the subprogram body, it is treated as a variable object
and may be assigned to. This means that when the procedure is called, the
actual parameter associated with reg must itself be a variable. The mode of
reg is inout, which means that reg can be both read and assigned to. Other
possible modes for subprogram parameters are in, which means that the
parameter may only be read, and out, which means that the parameter
may only be assigned to. If the mode is inout or out, then the word variable
can be omitted and is assumed.

The second parameter, incr, is a constant parameter, which means that
it is treated as a constant object in the subprogram statement body, and may
not be assigned to. The actual parameter associated with incr when the
procedure is called must be an expression. Given the mode of the

2. VHDL is Like a Programming Language 2-15

parameter, in, the word constant could be omitted and assumed. The
expression after the assignment operator is a default expression, which is
used if no actual parameter is associated with incr in a call to the procedure.

A call to a subprogram includes a list of actual parameters to be
associated with the formal parameters. This association list can be
position, named, or a combination of both. (Compare this with the format of
aggregates for values of composite types.) A call with positional association
lists the actual parameters in the same order as the formals. For example:

increment_reg(index_reg, offset–2); -- add value to index_reg

increment_reg(prog_counter); -- add 1 (default) to prog_counter

A call with named association explicitly gives the formal parameter name
to be associated with each actual parameter, so the parameters can be in
any order. For example:

increment_reg(incr => offset–2, reg => index_reg);

increment_reg(reg => prog_counter);

Note that the second call in each example does not give a value for the
formal parameter incr, so the default value is used.

Thirdly, here is an example of function subprogram declaration:
function byte_to_int(byte : word_8) return integer;

The function has one parameter. For functions, the parameter mode must
be in, and this is assumed if not explicitly specified. If the parameter class
is not specified it is assumed to be constant. The value returned by the body
of this function must be an integer.

When the body of a subprogram is specified, the syntax used is:
subprogram_body ::=

subprogram_specification is
subprogram_declarative_part

begin
subprogram_statement_part

end [designator] ;
subprogram_declarative_part ::= { subprogram_declarative_item }
subprogram_statement_part ::= { sequential_statement }
subprogram_declarative_item ::=

subprogram_declaration
| subprogram_body
| type_declaration
| subtype_declaration
| constant_declaration
| variable_declaration
| alias_declaration

The declarative items listed after the subprogram specification declare
things which are to be used locally within the subprogram body. The
names of these items are not visible outside of the subprogram, but are
visible inside locally declared subprograms. Furthermore, these items
shadow any things with the same names declared outside the subprogram.

When the subprogram is called, the statements in the body are executed
until either the end of the statement list is encountered, or a return
statement is executed. The syntax of a return statement is:

return_statement ::= return [expression] ;

2-16 The VHDL Cookbook

If a return statement occurs in a procedure body, it must not include an
expression. There must be at least one return statement in a function body,
it must have an expression, and the function must complete by executing a
return statement. The value of the expression is the valued returned to the
function call.

Another point to note about function subprograms is that they may not
have any side-effects. This means that no visible variable declared outside
the function body may be assigned to or altered by the function. This
includes passing a non-local variable to a procedure as a variable
parameter with mode out or inout. The important result of this rule is that
functions can be called without them having any effect on the environment
of the call.

An example of a function body:
function byte_to_int(byte : word_8) return integer is

variable result : integer := 0;
begin

for index in 0 to 7 loop
result := result*2 + bit'pos(byte(index));

end loop;
return result;

end byte_to_int;

2.5.2. Overloading
VHDL allows two subprograms to have the same name, provided the

number or base types of parameters differs. The subprogram name is then
said to be overloaded. When a subprogram call is made using an
overloaded name, the number of actual parameters, their order, their base
types and the corresponding formal parameter names (if named
association is used) are used to determine which subprogram is meant. If
the call is a function call, the result type is also used. For example, suppose
we declared the two subprograms:

function check_limit(value : integer) return boolean;

function check_limit(value : word_32) return boolean;

Then which of the two functions is called depends on whether a value of
type integer or word_8 is used as the actual parameter. So

test := check_limit(4095)

would call the first function, and
test := check_limit(X"0000_0FFF")

would call the second function.
The designator used to define a subprogram can be either an identifier

or a string representing any of the operator symbols listed in Section�2.3.
The latter case allows extra operand types to be defined for those operators.
For example, the addition operator might be overloaded to add word_32
operands by declaring a function:

function "+" (a, b : word_32) return word_32 is
begin

return int_to_word_32(word_32_to_int(a) + word_32_to_int(b));
end "+";

Within the body of this function, the addition operator is used to add
integers, since its operands are both integers. However, in the expression:

X"1000_0010" + X"0000_FFD0"

2. VHDL is Like a Programming Language 2-17

the newly declared function is called, since the operands to the addition
operator are both of type word_32. Note that it is also possible to call
operators using the prefix notation used for ordinary subprogram calls, for
example:

"+" (X"1000_0010", X"0000_FFD0")

2.5.3. Package and Package Body Declarations
A package is a collection of types, constants, subprograms and possibly

other things, usually intended to implement some particular service or to
isolate a group of related items. In particular, the details of constant values
and subprogram bodies can be hidden from users of a package, with only
their interfaces made visible.

A package may be split into two parts: a package declaration, which
defines its interface, and a package body, which defines the deferred
details. The body part may be omitted if there are no deferred details. The
syntax of a package declaration is:

package_declaration ::=
package identifier is

package_declarative_part
end [package_simple_name] ;

package_declarative_part ::= { package_declarative_item }
package_declarative_item ::=

subprogram_declaration
| type_declaration
| subtype_declaration
| constant_declaration
| alias_declaration
| use_clause

The declarations define things which are to be visible to users of the
package, and which are also visible inside the package body. (There are
also other kinds of declarations which can be included, but they are not
discussed here.)

An example of a package declaration:
package data_types is

subtype address is bit_vector(24 downto 0);
subtype data is bit_vector(15 downto 0);
constant vector_table_loc : address;
function data_to_int(value : data) return integer;
function int_to_data(value : integer) return data;

end data_types;

In this example, the value of the constant vector_table_loc and the bodies of
the two functions are deferred, so a package body needs to be given.

The syntax for a package body is:
package_body ::=

package body package_simple_name is
package_body_declarative_part

end [package_simple_name] ;
package_body_declarative_part ::= { package_body_declarative_item }

2-18 The VHDL Cookbook

package_body_declarative_item ::=
subprogram_declaration
| subprogram_body
| type_declaration
| subtype_declaration
| constant_declaration
| alias_declaration
| use_clause

Note that subprogram bodies may be included in a package body, whereas
only subprogram interface declarations may be included in the package
interface declaration.

The body for the package data_types shown above might be written as:
package body data_types is

constant vector_table_loc : address := X"FFFF00";

function data_to_int(value : data) return integer is
body of data_to_int

end data_to_int;

function int_to_data(value : integer) return data is
body of int_to_data

end int_to_data;

end data_types;

In this package body, the value for the constant is specified, and the
function bodies are given. The subtype declarations are not repeated, as
those in the package declarations are visible in the package body.

2.5.4. Package Use and Name Visibility
Once a package has been declared, items declared within it can be used

by prefixing their names with the package name. For example, given the
package declaration in Section�2.4.3 above, the items declared might be used
as follows:

variable PC : data_types.address;

int_vector_loc := data_types.vector_table_loc + 4*int_level;

offset := data_types.data_to_int(offset_reg);

Often it is convenient to be able to refer to names from a package without
having to qualify each use with the package name. This may be done using
a use clause in a declaration region. The syntax is:

use_clause ::= use selected_name { , selected_name } ;
selected_name ::= prefix . suffix

The effect of the use clause is that all of the listed names can subsequently
be used without having to prefix them. If all of the declared names in a
package are to be used in this way, you can use the special suffix all, for
example:

use data_types.all;

