
Sequential Circuits

I. INTRODUCTION :

The output of a combinational circuit depends only on the inputs of circuits. This means combinational

circuits do not have any memory elements. Sometimes a circuit’s next value depends on it’s past value. This means

we need to store the previous value to figure out the next value. For example, a sequence detector for 100 needs

to have previous information stored. In this section, Clocked Synchronous State Machine analysis will be done.

There are two different FSMs(finite state machines):

 Moore Machine: If output is only function of a state

 Mealy Machine: If output is function of state and inputs.

Figure 1 : Moore Machine

Figure 2 : Mealy Machine

II. BASIC ELEMENTS :

D-Flip flop

One of the main elements in FSM design is D-FF. State memories shown in Figures 1 and 2 can be designed

using D-FF or other memory elements such as J-K Flip flops, T-Flip flops, and so on. In this section, the design would

be done using D-FF but you may need to use other memory elements as well. D Flip Flops can be designed as

follows:

 D-FF (Input D will be transferred to output Q when Clk is positive edge. At all other times the previous value

will be held)

Figure 3.a : D-FF with Positive edge Clk Figure 3.b : D-FF with Positive edge Clk Truth Table

NEXT STATE

LOGIC

STATE

MEMORY

 OUTPUT

LOGIC

Inputs Outputs
Excitation

Current State

Clk

NEXT STATE

LOGIC

STATE

MEMORY

 OUTPUT

LOGIC

Inputs Outputs
Excitation

Current State

Clk

NEXT STATE

LOGIC

STATE

MEMORY

 OUTPUT

LOGIC

Inputs Outputs
Excitation

Current State

Clk

Clk D Q

 D D

0 D Q0

1 D Q0

VHDL Code and Simulation:

library ieee;

use ieee.std_logic_1164.all;

entity DFF is

 port(

 D : in std_logic;

 Clk : in std_logic;

 Q : out std_logic);

end DFF;

architecture behavior of DFF is

begin

 process (Clk) -- Change of Clk .

 begin

 if (Clk'event and Clk='1') then -- Clk event and positive edge. (Change Clk=‟0‟ for negative edge)

 Q <= D;

 end if;

end process;

end behavior;

TestBench

library ieee;

use ieee.std_logic_1164.all;

entity DFF_Test is

end DFF_Test;

architecture behavior_test of DFF_Test is

constant T: time := 100 ns; -- Constant for clock period

signal D_Test : std_logic; -- Inputs and outputs are declared as signals

signal Clk : std_logic;

signal Q_Test : std_logic;

begin

 DUT: entity work.DFF -- Instantiation of Design Under Test

 port map (D => D_Test, Clk => Clk, Q => Q_Test);

 process -- Clock that runs T=100 ns

 begin

 Clk <= '0';

 wait for T/2;

 Clk <= '1';

 wait for T/2;

 end process;

 process -- Generation of input vectors.

 D_Test <= '0'; -- D_Test value Low (0) for 200 ns

 wait for 2*T;

 D_Test <= '1'; -- D_Test value High (1) for 300 ns

 wait for 3*T;

 D_Test <= '0'; -- D_Test value Low (0) for rest of time

 end process;

end behavior_test;

Figure 4 : Simulation Results

 D-FF with Asynchronous Reset (Input D will be transferred to output Q when Clk is positive edge. At all

other times, the previous value will be held. Reset can reset the Q to zero at any time independently from

Clk)

Figure 5.a : D-FF with Asynchronous Reset Figure 5.b : Truth Table

VHDL Code and Simulation:

library ieee;

use ieee.std_logic_1164.all;

entity DFF_Reset is

 port(

 D : in std_logic;

 Clk : in std_logic;

 Reset : in std_logic;

 Q : out std_logic);

end DFF_Reset;

architecture behavior of DFF_Reset is

begin

 process (Clk,Reset) -- Change of Clk and Reset .

 begin

 if (Reset ='0') then

 Q <= '0';

 elsif (Clk'event and Clk='1') then -- Clk event and positive edge. (Change Clk=‟0‟ for negative edge)

 Q <= D;

 end if;

end process;

end behavior;

TestBench

library ieee;

use ieee.std_logic_1164.all;

entity DFF_Reset_Test is

end DFF_Reset_Test;

architecture behavior_test of DFF_Reset_Test is

constant T: time := 100 ns; -- Constant for clock period

signal D_Test : std_logic; -- Inputs and outputs are declared as signals

signal Clk : std_logic;

signal Reset_Test : std_logic;

signal Q_Test : std_logic;

begin

 DUT: entity work.DFF_Reset -- Instantiation of Design Under Test

 port map (D => D_Test, Clk => Clk, Reset => Reset_Test, Q => Q_Test);

 process

D-FF

Clk

D Q

Reset

Clk D Reset Q

--- --- 0 0

 D 1 D

0 D 1 Q0

1 D 1 Q0

 begin -- Clock that runs T=100 ns

 Clk <= '0';

 wait for T/2;

 Clk <= '1';

 wait for T/2;

 end process;

 process

 begin -- Generation of input vectors.

 Reset_Test <= '0';

 D_Test <= '0';

 wait for 2*T;

 D_Test <= '1';

 wait for T;

 Reset_Test <= '1';

 wait for 2*T;

 D_Test <= '0';

 wait for 3*T;

 D_Test <= '1';

 end process;

end behavior_test;

Figure 6 : Simulation Results

 D-FF with Asynchronous Reset and Synchronous Enable (Input D will be transferred to output Q when Clk is

positive edge. At all other times, the previous value will be held. Reset can reset the Q to zero at any time

independently from Clk and D-FF will be enabled when E=1 is at positive Clk edge).

Figure 7.a : D-FF with Asynchronous Reset Figure 7.b : Truth Table

VHDL Code and Simulation:

library ieee;

use ieee.std_logic_1164.all;

entity DFF_R_E is

port(

 D : in std_logic;

 Clk : in std_logic;

D-FF

Clk

D Q

Reset

E

Clk D E Reset Q

--- --- --- 0 0

 D 1 1 D

 D 0 1 Q0

0 D --- 1 Q0

1 D --- 1 Q0

Reset = 1 and Q = D at PosEdge Clk
Reset = 0 and Q =0 at PosEdge Clk

 Reset : in std_logic;

 Enable: in std_logic;

 Q : out std_logic);

end DFF_R_E;

architecture behavior of DFF_R_E is

begin

 process (Clk,Reset) -- Change of Clk and Reset (Enable is not is process).

 begin

 if (Reset ='0') then

 Q <= '0';

 elsif (Clk'event and Clk='1') then -- Clk event and positive edge. (Change Clk=‟0‟ for negative edge)

 if (Enable ='1') then -- During posedge clock whenever Enable = 1 , Q = D

 Q <= D;

 end if; -- During posedge clock whenever Enable =0 , Q = Q0

end if;

end process;

end behavior;

TestBench

library ieee;

use ieee.std_logic_1164.all;

entity DFF_R_E_Test is

end DFF_R_E_Test;

architecture behavior_test of DFF_R_E_Test is

constant T: time := 100 ns; -- Constant for clock period

signal D_Test : std_logic; -- Inputs and outputs are declared as signals

signal Clk : std_logic;

signal Reset_Test : std_logic;

signal Enable_Test : std_logic;

signal Q_Test : std_logic;

begin

 DUT: entity work.DFF_R_E

 port map (D => D_Test, Clk => Clk, Reset => Reset_Test, Enable => Enable_Test, Q => Q_Test);

 process

 begin -- Constant for clock period

 Clk <= '0';

 wait for T/2;

 Clk <= '1';

 wait for T/2;

 end process;

 process

 begin -- Clock that runs T=100 ns

 Reset_Test <= '0'; -- Generation of input vectors.

 D_Test <= '0';

 Enable_Test <= '0';

 wait for 2*T;

 D_Test <= '1';

 wait for T;

 Reset_Test <= '1';

 wait for 2*T;

 D_Test <= '0';

 wait for 3*T;

 D_Test <= '1';

 Enable_Test <= '1';

 wait for 2*T;

 D_Test <= '0';

 wait for 2*T;

 D_Test <= '1';

 wait for 6*T;

 end process;

end behavior_test;

Figure 8 : Simulation Results

Finite State Machine (FSM)

 A state machine is specified by State Diagrams. As described in the beginning, FSM can be a Moore or Mealy

machine. A state diagram is made of nodes with a transition arrow between the nodes. Nodes represent states and

transition arrows represent logic expressions. The arrow direction represents the transaction from current state to

the next state and this will happen when the transaction arrow logic expression is true. Figures 9.1 and 9.2 show

node and transaction arrows of Mealy and Moore machines, respectively.

Figure 9.1 : Mealy Machine Figure 9.2 : Moore Machine

Reset = 1 and Enable = 1 and Q =D at PosEdge Clk

Reset = 1 and Enable = 0 and Q =Q0 at PosEdge Clk

STATE

other stateother state

Logic expressionLogic expression

Out ValueOut Value

STATE

other stateother state

Logic expressionLogic expression

Out Value

Device Type Characteristic Equation

S-R Latch Q* = S + R’.Q

D Latch Q* = D

Edge-triggered D flip-flop Q* = D

D flip-flop with Enable Q* = EN.D + EN’.Q

Master/slave S-R flip-flop Q* = S + R’.Q

Master/slave J-K flip-flop Q* = J.Q’ + K’.Q

Edge Triggered J-K flip-flop Q* = J.Q’ + K’.Q

T flip-flop Q*= Q’

T flip-flop with enable Q* = EN.Q’ + EN’.Q

Figure 10. Latch and flip-flop characteristic equations

State Machine VHDL Code:

Mealy Machine: We mostly use 2 processes

 Modeling the state registers and decide the next state

 Updating the output and next state

Moore Machine: We mostly use 2-3 processes

 Modeling the state registers and decide the next state

 Updating the next state

 Output logic

VHDL CODE EXAMPLE

In this section, we will examine a simple state diagram and its VHDL code. Please check the comments carefully.

a. Moore Machine:

S0

Out=0

S2

Out=0

S1

Out=0

In1&In2&In3

RESET

In1&In2&In3

In1
In1

In1

In1

(In1)|(In2)

Figure 10.1 : State Diagram

Figure 10.2 : State Diagram (Generated via Modelsim)

library ieee;

use ieee.std_logic_1164.all;

entity FSM_MOORE is

 port(

 Reset : in std_logic;

 In1, In2, In3 : in std_logic;

 Clk : in std_logic;

 Out1 : out std_logic);

end FSM_MOORE;

architecture behavior of FSM_MOORE is

type states is (S0, S1, S2); -- User defined enumerator “states”

signal present_state, next_state : states; -- Using enumerator “states” as signal

begin

 process (Clk, Reset) -- Clk and Reset in process (Asynchronous Reset).

 begin

 if (Reset = '0') then -- When Reset = 0 State = S0

 present_state <= S0;

 elsif (Clk'event and Clk='1') then -- When Reset = 1 and posedge Clk state assignment

 present_state <= next_state;

 end if;

end process;

process (present_state,In1, In2, In3) -- present_state, and inputs are in process

begin

 case present_state is

 when S0 =>

 if In1 = '0' then -- Transition to S1 when (~In1 &In2&In3)

 if In2='1' then

 if In3='1' then

 next_state <= S1;

 else

 next_state <= S2; -- Transition to S2 when (~In1 &In2&~In3)

 end if;

 else

 next_state <= S0; -- Transition to S0 all others

 end if;

 else

 next_state <= S0;

 end if;

 when S1 =>

 if In1 = '0' then -- When State is S1 stay at S1 when (In1)

 next_state <= S1;

 else

 next_state <= S2; -- When State is S1 transition to S2 when (~In1)

 end if;

 when S2 =>

 if In1 = '0' then

 next_state <= S0; -- When State is S2 transition to S0 when (~In1)

 else

 next_state <= S1; -- When State is S2 transition to S1 when (In1)

 end if;

 end case;

 end process;

 process (present_state) -- Moore machine process for output. Only present_state

 begin -- This process could have been integrated into previous

 case present_state is -- process. This could have latching problem.ISE XST(Xilinx

 when S0 | S1 => -- Synthesis Tool) will give both same result.

 Out1 <= '0'; -- Out1 is 0 (zero) when states are S0 and S1

 when S2 =>

 Out1 <= '1'; -- Out1 is 1 (one) when state S2

 end case;

 end process;

 end behavior;

Figure 11 : Simulation Results

b. Mealy Machine:

S0

S2 S1

In1&In2&In3

Out=0

RESET

In1&In2&In3

Out=1

In1

Out=0In1

Out=1

In1

Out=0

In1

Out=0

(In1)|(In2)

Out=0

Figure 12.1 : State Diagram

Figure 12.2 : State Diagram (Generated via Modelsim)

library ieee;

use ieee.std_logic_1164.all;

entity FSM_MEALY is

 port(

 Reset : in std_logic;

 In1, In2, In3 : in std_logic;

 Clk : in std_logic;

 Out1 : out std_logic);

end FSM_MEALY;

architecture behavior of FSM_MEALY is

type states is (S0, S1, S2); -- User defined enumerator “states”

signal present_state, next_state : states; -- Using enumerator “states” as signal

begin

 process (Clk, Reset) -- Clk and Reset in process (Asynchronous Reset).

 begin

 if (Reset = '0') then -- When Reset = 0 State = S0

 present_state <= S0;

 elsif (Clk'event and Clk='1') then -- When Reset = 1 and posedge Clk state assignment

 present_state <= next_state;

 end if;

end process;

process (present_state,In1, In2, In3) -- present_state, and inputs are in process

begin

 case present_state is

 when S0 =>

 if In1 = '0' then

 if In2='1' then

 if In3='1' then

 next_state <= S1; -- Transition to S1 when (~In1 &In2&In3)

 else

 next_state <= S2; -- Transition to S2 when (~In1 &In2&~In3)

 end if;

 else

 next_state <= S0; -- Stay at S0 all others

 end if;

 else

 next_state <= S0;

 end if;

 when S1 =>

 if In1 = '0' then

 next_state <= S1; -- When State is S1 stay at S1 when (In1)

 else

 next_state <= S2; -- When State is S1 transition to S2 when (~In1)

 end if;

 when S2 =>

 if In1 = '0' then

 next_state <= S0; -- When State is S2 transition to S0 when (~In1)

 else

 next_state <= S1; -- When State is S2 transition to S1 when (In1)

 end if;

 end case;

 end process;

 process (present_state, In1, In2, In3) -- Mealy machine process for output.(present_state and inputs are in process)

 begin

 case present_state is

 when S0 =>

 if (In1 ='0' and In2='1' and In3 = '1') then -- Output depends on state values and inputs. This could have integrated

 Out1 <= '0'; -- into previous process.

 else

 Out1 <= '1';

 end if;

 when S1 =>

 if In1 = '0' then

 Out1 <= '0';

 else

 Out1 <= '1';

 end if;

 when S2 =>

 Out1 <= '0';

 end case;

 end process;

end behavior;

Figure 13 : Simulation Results

DESIGN EXAMPLE (SEQUENCE RECOGNIZER for “101”):

S0 S1 S2

X=1

Z=0

X=0

Z=0

X=1

Z=1

X=1

Z=0

X=0

Z=0

Reset

X=0

Z=0

Figure 14 :Mealy Machine State diagram

library ieee;

use ieee.std_logic_1164.all;

entity SEQ_MEALY is

 port(

 Reset : in std_logic;

 X : in std_logic;

 Clk : in std_logic;

 Z : out std_logic);

end SEQ_MEALY;

architecture behavior of SEQ_MEALY is

type states is (S0, S1, S2); -- User defined enumerator “states”

signal present_state, next_state : states; -- Using enumerator “states” as signal

begin

 process (Clk, Reset) -- Clk and Reset in process (Asynchronous Reset).

 begin

 if (Reset = '0') then -- When Reset = 0 State = S0

 present_state <= S0;

 elsif (Clk'event and Clk='1') then -- When Reset = 1 and posedge Clk state assignment

 present_state <= next_state;

 end if;

end process;

process (present_state,X) -- present_state, and inputs are in process

begin

 case present_state is

 when S0 =>

 if X = '1' then

 next_state <= S1; -- Transition to S1 when (~In1 &In2&In3)

 else

 next_state <= S0; -- Transition to S2 when (~In1 &In2&~In3)

 end if;

 when S1 =>

 if X = '0' then

 next_state <= S2; -- When State is S1 stay at S1 when (In1)

 else

 next_state <= S1; -- When State is S1 transition to S2 when (~In1)

 end if;

 when S2 =>

 if X = „1' then

 next_state <= S1; -- When State is S2 transition to S0 when (~In1)

 else

 next_state <= S0; -- When State is S2 transition to S1 when (In1)

 end if;

 end case;

 end process;

 process (present_state,X) -- Mealy machine process for output.(present_state and inputs are in process)

 begin

 case present_state is

 when S0 =>

Z<=‟0‟;

 when S1 =>

Z<=‟0‟;

 when S2 =>

if X = „1‟ then

Z <= „1‟;

Else

Z <= „0‟;

End if;

Out1 <= '0';

 end case;

 end process;

 end behavior;

Figure 15 : Modelsim State diagram view

Figure 16 : Simulation Results

