
Combinational Circuits

Introduction to VHDL for FPGAs

I. INTRODUCTION :

VHDL stands for VHSIC (very high speed integrated circuits) Hardware Description Language. Sported by US

Department of Defense and later became IEEE standard. There are many revisions of VHDL [1987 and 1993]. VHDL

can describe and model really complex systems. To get some understanding of this language, an example design

will be used. This is a Half Adder that has following block diagram and truth table. This is a simple combinational

circuit where output values are solely depends on input values. There is no memory component where output

value stored.

Half Adder

(HA)

A

B

Sum

Cout

Figure 1. Half Adder Block Diagram

Table 1. Half Adder Truth Table

A B Sum Cout

0 0 0 0

0 1 1 0

1 0 1 0

1 1 0 1

Using Boolean algebra Sum and Cout can be written in terms of input :

 Using the Boolean equations Sum [1] and Cout [2] the schematic would be,

A

B
Cout

Sum
XOR

AND

Figure 2. Half Adder Schematic

1-) Gate level description of Half Adder is

library ieee; // Due to special std_logic is used the std_logic_1164 needs to be used.

use ieee.std_logic_1164.all; // You can use many different data type, functions and operators.

entity HA is // This is the entity declaration. You must have an entity name.

port (// Input and output must be declared in entity. This is description of block

 A, B : in std_logic; // diagram of HA that is given in figure 1. The std_logic data type is used

 Sum, Cout : out std_logic // for input and output.

); // I/O port declaration* : signal_name1, signal name2,…. : mode data_type

end HA; // Entity must be ended.

architecture gate_HA of HA is // Operation of the circuit (what schematic) is described in here. Architecture
 // has a unique name (gate_HA). All of the internal signals, constants, and

begin // components must be declared before the “begin” statement.
 // Description of operation is between “begin” and “end” .

 Sum <= A xor B; // These statements are concurrent statements.

 Cout <= A and B; // The left side of the statement is output and when one of the inputs (A or B) is
 // changed after a delay, the new value of Cout is assigned.

end gate_HA; // end the begin statement and name of the architecture.

* Data Types : VHDL is a strongly typed language where data type must be declared correctly. One of the

most commonly used type is std_logic.

 std_logic : This type has following values :

Figure 3.std_logic values

Some of the common std_logic deceleration ;

Sum : out std_logic_vector (7 downto 0) //Sum is 8-bit output (MSB = A(7), LSB =A(0)) .

Sum : out std_logic_vector (0 downto 7) //Sum is 8-bit output (MSB = A(0), LSB =A(7)) .

2-) Structural description of Half Adder is

Most of the systems are made of smaller subsystems. You can build a large system by instantiation of

smaller systems. Designing large system using component instantiation is known as structural description. The HA as

structural description,

A

B
Cout

Sum
U1

U2

Xor

And

Figure 4. Structural Description of Half Adder

Figure 5. Description of AND and XOR gates.

-- Structural Description of HA using “component instantiation”.

architecture struct_HA of HA is // name of the architecture.

component xor2 // Component declaration of XOR2 gate.

port(a,b: in std_logic; z: out std_logic); // Port declaration is similar to entity declaration above.

end component; // end component

component and2 // Component declaration of AND2 gate

port(a,b: in std_logic; z: out std_logic); // Port declaration is similar to entity declaration above.

end component; // end component

begin

U1 : xor2 port map(a => A, b => B, z => Sum); // instantiate component XOR2

U2 : and2 port map(a => A, b => B, z => Cout); // instantiate component AND2

End struct_HA;

library ieee;

use ieee.std_logic_1164.all;

entity and2 is

port (

 A, B : in std_logic;

 Z : out std_logic

);

 end and2;

architecture dataflow of and2 is

begin

Z <= A and B;

end dataflow;

library ieee;

use ieee.std_logic_1164.all;

entity xor2 is

port (

 A, B : in std_logic;

 Z : out std_logic

);

 end xor2;

architecture dataflow of and2 is

begin

Z <= A xor B;

end dataflow;

Figure 6. Simulation results.

-- Structural Description of HA using “entity instantiation”.

architecture struct_HA of HA is

begin

U1 : entity xor2 port map(a => A, b => B, z => Sum);

U2 : entity and2 port map(a => A, b => B, z => Cout);

End struct_HA;

II. RTL (Register Transfer Level) Combinational Circuits:

RTL is useful for computer design where machine language instructions are defined as sequence of more

primitive steps involving loading, storing, combining and testing registers.

2.1. RTL Components

2.1.1. Operators and Data Types

Table 2.1 Operators and Data Types VHDL-93 and IEEE std_logic_1164

Operator Description Data type of operands Data type of result

x ** y Exponent integer integer

x – y Subtraction

Integer type for constant and array boundaries, not
synthesis

x * y Multiplication

x / y Division

x + y Addition

x & b concatenation 1-D array element 1-D Array

x = y Equal to any Boolean

x /= y Not equal to

x < y Less than

 Scalar or 1-D Array Boolean
x <= y Less than or equal to

x > y Greater than

x >= y Greater than or equal to

not x negation

Boolean, std_logic, std_logic_vector
x and y And

x or b Or

x xor b Xor

Table 2.2 Operators and Data Types IEEE numeric_std

Operator Description Data type of operands Data type of result

x + y Addition
Unsigned, natural unsigned
signed, integer signed

x - y Subtraction

x * y Multiplication

x = y Equal to

Unsigned, natural boolean
signed, integer

x /= y Not equal to

x < y Less than

x <= y Less than or equal to

x > y Greater than

x >= y Greater than or equal to

Table 2.3 Type conversion between std_logic_vector and numeric data types

Data Type of x To data type Conversion function/type casting

Unsigned, signed std_logic_vector std_logic_vector(x)

signed, std_logic_vector unsigned unsigned(x)

unsigned, std_logic_vector signed signed(x)

Unsigned, signed integer to_integer(x)

Natural unsigned to_unsigned(x, size)

integer signed to_signed(x, size)

Concatenation [1]:

signal a1 : std_logic;

signal a4 : std_logic_vector (3 downto 0);

signal b8, c8, d8 : std_logic_vector (7 downto 0);

…..

b8 <= a4 & a4;

c8 <= a1 & a1 & a4 & “00”;

d8 <= b8 (3 downto 0) & c8 (3 downto 0);

III. Conditional Signal assignments:

3.1. When-else

Signal_name < = expression_1 when Boolean_expression1 else

 Expression_2 when Boolean_expression2 else

 .

 .

 Expression_i

Example : (3-1 Mux)

Table 3.1 Truth table for 3-1 MUX

A B C Sel Z

A X X 00 A

X B X 01 B

X X C 10 C

X X X 11 Z

library IEEE;
use IEEE.std_logic_1164.all;

Entity MUX_When is
port (
 A , B, C : in std_logic;
 Sel : in std_logic_vector (1 downto 0);
 Z : out std_logic);
end MUX_When;

Architecture behavioral of MUX_When is
begin
Z <= A when Sel="00" else
 B when Sel="01" else
 C when Sel="10" else
 'Z' ;
end behavioral;

Figure 3.1 Simulation Results:

3.2. Select

With sel select

Signal_name < = expression_1 when choice_1

 Expression_2 when choice_2

 .

 .

 Expression_i when others

Example : (3-1 Mux)

Table 3.1 Truth table for 3-1 MUX

A B C Sel Z

A X X 00 A

X B X 01 B

X X C 10 C

X X X 11 Z

library IEEE;
use IEEE.std_logic_1164.all;

Entity MUX_Select is
port (
 A , B, C : in std_logic;
 Sel : in std_logic_vector (1 downto 0);
 Z : out std_logic);
end MUX_Select;

Architecture behavioral of MUX_Select is
begin
With Sel select
Z <= A when "00",
 B when "01" ,
 C when "10" ,
 'Z' when others;
end behavioral;

Figure 3.2 Simulation Results:

3.3. Using PROCESS

Process (sensitivity list)

Begin

 Sequential statements;

End process;

3.3.1 Signal Assignment

Signals are assigned have different order in process and outside of process:

process (a,b)

begin

z <= a or b;

z <= a and b;

end process;

only the last statement is affected. The code that is given below is same as above

process (a,b)

begin

z <= a and b;

end process;

3.3.2. If else Statement

If Boolean_exp_1 then

 Sequential statements

elsIf Boolean_exp_1 then

 Sequential statements

.

.

else

 Sequential statements

End if;

Example : (3-1 Mux)

Table 3.1 Truth table for 3-1 MUX

A B C Sel Z

A X X 00 A

X B X 01 B

X X C 10 C

X X X 11 Z

library IEEE;
use IEEE.std_logic_1164.all;

Entity MUX_IF is
port (
 A , B, C : in std_logic;
 Sel : in std_logic_vector (1 downto 0);
 Z : out std_logic);
end MUX_IF;

Architecture behavioral of MUX_IF is
begin
process (A,B,C,Sel)
 begin
if Sel = "00" then
 Z <= A;
elsif Sel = "01" then
 Z <= B;
elsif Sel = "10" then
 Z <= C;
else
 Z <= 'Z';
end if;

end process;
end behavioral;

Figure 3.3 Simulation Results:

3.3.2. Case Statement

Case sel is

When choice_1 =>

 Sequential statements;

When choice_2 =>

 Sequential statements;

.

.

When others =>

 Sequential statements;

End case

library IEEE;
use IEEE.std_logic_1164.all;

Entity MUX_CASE is
port (
 A , B, C : in std_logic;
 Sel : in std_logic_vector (1 downto 0);
 Z : out std_logic);
end MUX_CASE;

Architecture behavioral of MUX_CASE is
begin
process (A,B,C,Sel)
 begin

case Sel is
when "00" =>
 Z <= A;
when "01" =>
 Z <= B;
 when "10" =>
 Z <= C;
 when others =>
 Z <= 'Z';
end case;
end process;
end behavioral;

Figure 3.4 Simulation Results:

Tutorial assignments :

1-) Using 2 HA and component instantiation please design 1 full adder.

2-) Using if-else, case design 32-bit 5-1 Multiplexers.

References :

[1] FPGA PROTOTYPING BY VHDL EXAMPLES , Pong P. Chu, Wiley Publishing, 2008

[2] DIGITAL DESIGN , John F. Wakerly, Prenticehall, 2006

