
Experiment No. 6

Input / Output Design

ECE 441

Peter Chinetti

November 14, 2013

Date Performed: October 10,17, & 24, 2013
Partners: Zelin Wu
Instructor: Professor Saniie

1 Introduction

1.1 Purpose

The purpose of this experiment is to introduce the user to the concepts of
memory mapped I/O and interrupts.

1.2 Background

1.3 Memory-Mapped Input / Output (I/O)

There are two different types of philosophies when it comes to interfacing to
I/O devices. These are known as Memory Mapped I/O and Isolated I/O. The
MC68000 uses the memory-mapped I/O philosophy. This implies that all I/O
devices are accessed by reading and writing to memory locations within the
microprocessors address space.

1.4 Interrupts

The MC68000 microprocessor is equipped with 3 interrupt request signals (*IPL2,
*IPL1, *IPL0) which provide a maximum of 7 distinct interrupt levels, and a
normal operating level (level 0). The Status Register contains three Interrupt
Mask Bits (I2, I1, I0) which are the logical complement of the interrupt hardware
signals. When dealing with interrupts, the device requesting service activates a
hardware signal called an Interrupt Request line. (*IRQ). The interrupt request
lines from several peripheral devices are prioritized, encoded and inputted to
the three interrupt request lines of the MC68000. The interrupt requests are
made pending until the CPU completes the current instruction being executed.

1

Once the instruction is completed, the current state of the processor is saved on
the stack, and an interrupt acknowledge cycle begins. The MC68000 compares
the incoming interrupt request to the current interrupt priority level stored in
the Status Registers Interrupt Mask Bits. If the incoming level is less than or
equal to the current interrupt priority level, then the interrupt is not serviced.

2 Lab Procedure and Equipment List

2.1 Equipment

• SANPER System

• Computer with TUTOR software

2.2 Procedure

Design and implement I/O device, then test with a test program.

3 Results, Analysis and Discussion

3.1 Test Program

1 ORG $900

3 START MOVEA.L #$06E001 ,A0 ; i n i t with address
MOVE.B (A0) ,D0 ; Read

5 MOVE.L #$000001 ,D1 ; i n i t
MOVE.L #$000099 ,D2

7 MOVE.W #$0000 ,D3
MOVE.W #$FFFF,D4

9

CHECK CMP.B D2,D0 ; are we done
11 BEQ DONE

MOVE.B D0, $06E001 ; wr i t e to LEDs
13

WAIT ADDI.W #$0001 ,D3 ; sp in up D3
15 CMP D3,D4 ; check f o r doneness

BEQ COUNT
17 BRA WAIT ; sp in again

19 COUNT ABCD D1,D0 ; decimal add
BRA CHECK

21

DONE MOVE.B D0, $06E001 ; wr i t e l a s t va lue
23 MOVE.B #228,D7 ; back to tuto r

TRAP #14
25

END START

lab6.X68

2

3.2 Diagram

74LS32

74LS48

74LS373

74LS04

74LS05

LED

74LS48

LED

74LS373

DIP

Swi tch

74LS138

R/W*

AS*

Q6* A14

A13

DTACK*

LDS*

D0

D1

D2

D3

D4

D5

D6

D7

3

3.3 ABORT Switch

The diagram on page 2 of the User Manual has an error, so I can not be read.
Instead, I discuss how I would design the circuit. I would wire the button into
an encoder connected to the IRQ lines. When the button was pressed, it would
encode a 7 (111) onto the lines. Interrupt number 7 is unmaskable,so it would
ensure that the system would break out of the currently executing program.
The ABORT button works by ensuring the vector generated by the interrupt
level 7 points to a program which can recover back to TUTOR.

3.4 Auto-Vectored and User Vectored Interrupts

Auto-vectored interrupts do not have a vector provided by the interrupting
peripheral, vectored interrupts do.

3.5 IACK Cycle

a. Peripheral signals on its interrupt line

b. Line is encoded into an interrupt level

c. Level is checked against SR

d. If higher, 111 is place on FC, and level is placed on A3 −A2.

e. A3 −A2 are decoded into a specific IACK line.

3.5.1 Vectored Interrupt

a. Peripheral writes it’s vector onto the data bus and asserts DTACK

b. 68000 executes the handler pointed to by the vector

a. Peripheral writes it’s vector onto the data bus and asserts DTACK

b. 68000 executes the handler pointed to by the vector

3.5.2 Auto-Vectored Interrupt

a. Peripheral asserts VPA

b. 68000 internally generates an interrupt vector, then executes it.

4 Conclusions

This experiment was accomplished. An I/0 device was built and tested.

4

