
EXPERIMENT #8

SERIAL COMMUNICATION USING THE
ASYNCHRONOUS COMMUNICATIONS INTERFACE ADAPTER

(ACIA)

1.0 Purpose

The purpose of this experiment is to introduce the student to the following topics:

• the Asynchronous Communications Interface Adapter IC (ACIA, MC6850)
• the fundamentals of serial asynchronous data communications
• the RS-232-C Serial Communications Standard

2.0 Component Requirements

None.

3.0 Background

A. The Asynchronous Communications Interface Adapter (ACIA)

The ACIA (MC6850) provides the data formatting and control to interface serial
asynchronous data communications systems to parallel bus systems.

When the CPU writes data to the ACIA in a parallel format, the ACIA performs a
parallel-to-serial conversion before transmitting the data serially. Similarly, when the
ACIA receives data in a serial format, it performs a serial-to-parallel conversion,
which enables the CPU to read the data in a parallel format.

The parallel bus (host CPU) interface of the ACIA consists of the following signals:

Quantity Description

3 Chip Select lines (*CS2, CS1, CS0)
1 Register Select line (RS)
1 Read/Write line (R/*W)
1 Clock line (E)
1 Interrupt Request line (*IRQ)
8 Data lines (D0 to D7)

Saniie & Perich Experiment #8 - 1

The serial communications interface of the ACIA consists of the following signals:

Quantity Description

1 Transmit Data (TX DATA)
1 Receive Data (RX DATA)
1 Clear-to-Send (*CTS)
1 Request-to-Send (*RTS)
1 Data Carrier Detect (*DCD)
1 Transmit Data Clock (TX CLOCK)
1 Receive Data Clock (RX CLOCK)

The top five serial communications signals are identical to the ones used to
implement an asynchronous version of the RS-232-C Serial Communications
Standard.

Registers

The ACIA has four internal registers that are accessible by the CPU. The selection of
a certain register depends on the state of the Register Select (RS) and Read/*Write
(R/*W) lines. The following chart illustrates how each register is selected.

RS R/*W Register Descriptions

0 0 Control Register (CR)
0 1 Status Register (SR)
1 0 Transmit Data Register (TDR)
1 1 Receive Data Register (RDR)

Note: 0 or 1 indicates the logic level of the signal.

Notice that the SR and the RDR are read-only registers, and the CR and the TDR are
write-only registers.

The preceding discussion is meant to serve as a brief introduction to the ACIA. For
more detailed information about this device refer to the course lecture notes and the
following textbooks:

a. Bishop, Ron. Basic Microprocessors and the 6800.

Rochelle Park, NJ: Hayden Book Company, 1979.
(Note: refer specifically to Chapter 9, section 9.6)

b. 8-Bit Microprocessor & Peripheral Data Book.

Series C. Austin, Texas: Motorola, Inc. 1983

Saniie & Perich Experiment #8 - 2

B. Asynchronous Serial Communication

In serial communication systems, a byte of data is transmitted one bit at a time along
the same physical wire. In asynchronous serial communications systems, “start” and
“stop” bits are added before and after the data to inform the receiving device as to
where the data begins and ends. When transmitting serial data asynchronously, the
data packet must adhere to the following specific format.

The first bit transmitted is the Start Bit, and this bit indicates the beginning of a
character word. This bit is always a logic 0.

Next, 7 or 8 Data Bits are transmitted, one bit at a time, starting with the Least
Significant Bit or LSB (i.e. D0), and increasing towards the Most Significant Bit or
MSB (i.e. D7).

The Parity Bit is sent next. It can be either logic 0 or 1 depending upon the data and
the type of parity selected in the ACIA’s Control Register.

Finally the Stop Bits are transmitted. These bits indicate the end of a character word.
There can be either 1 or 2 Stop Bits, and they are always logic 1.

Refer to Figures 9.23 and 9.24 which illustrates the format for serially transmitting a
character.

The preceding discussion is meant to serve as a brief introduction to asynchronous
communications. For more detailed information about this device refer to the course
lecture notes and the following textbook:

Bishop, Ron. Basic Microprocessors and the 6800.
Rochelle Park, NJ: Hayden Book Company, 1979.
(Note: refer specifically to Chapter 9, section 9.6)

C. RS-232-C Serial Communications Standard

RS-232-C is the name given to the hardware standard for the serial transmission of
data from one computer to another computer or peripheral device. The voltage levels
for a logic 0 are +3 to +15 Volts, and for a logic 1 are -3 to -15 Volts. For ACIA #1
and ACIA #2, the RS-232 signals are made available on two 25-pin connectors (plug
type DB-25 Connectors) at the back of the SANPER-1 Educational Lab Unit.

In the SANPER-1 Unit, the TTL serial data being transmitted by the ACIA is first
inverted, and then converted to RS-232-C type voltages by an integrated circuit
known as a “TTL to RS-232-C Converter” (Motorola Part No.: MC1488). This
device converts the TTL signals (0 or +5 Volts) to RS-232 signals (-3 to -15 Volts or
+3 to +15 Volts). The RS-232 data is then sent to the receiving computer or
peripheral device.

When RS-232 data is received, it is inverted and then converted to TTL level voltages
by an integrated circuit known as a “RS-232-C to TTL Converter” (Motorola Part No.

Saniie & Perich Experiment #8 - 3

MC1489). This device converts the RS-232 signals (-3 to -15 Volts or +3 to +15
Volts) to TTL signals (0 or +5 Volts). The TTL data is then input to the ACIA on the
“RX DATA” pin.

4.0 Statement of the Problem

This experiment consists of two parts. In the first part, the student will implement serial
asynchronous communications using the ACIA. The student will use ACIAs to establish
a full-duplex communication channel with another lab unit. The student will write
software routines to initialize, control, and monitor the operation of the ACIA, which will
communicate with the other lab unit.

In the second part of the experiment, the student will modify the program from
Experiment #4 (Code Conversion and Bit Manipulation) by replacing the TRAP #14
routines that interface to the terminal (i.e. PORT1IN), with their own terminal handling
routines. These routines will control the ACIA, which inputs and outputs data to or from
the terminal. These routines will be implemented using TRAP #15.

5.0 Preliminary Assignment

General Note: In sections A and B below, the student may use TRAP #14 routines for

inputting and outputting data to/from their terminal. In section C, the
student is prohibited from using TRAP #14 routines for terminal I/O.

A. Polling Implementation of Unit-to-Unit Communication

1. Write an initialization subroutine for ACIA #2 on the SANPER-1 Educational
Lab Unit. Configure ACIA #2 to operate as follows:

• transmitter and receiver clocks set to divide-by-16 mode
• 8 data bits
• no parity bit
• 1 stop bit
• *RTS pin low
• transmitter and receiver interrupts disabled

2. Write a subroutine to transmit an ASCII character. First, determine from the

appropriate ACIA status flags whether the ACIA is ready to accept a character for
transmission. If it is, take the ASCII character pointed to by Address Register
A0, store it in ACIA #2’s TDR register, and then exit the subroutine.

3. Write a subroutine to continually monitor the status flags of ACIA #2 to

determine if it has received an ASCII character. Once a character is received,
again examine the ACIA’s status flags to determine if the character was received
error free.

Saniie & Perich Experiment #8 - 4

If no errors occurred, place the character in Data Register D0, then exit the
subroutine.

If an error occurred, print a message on the terminal indicating which type of
error occurred and the value of the received data. Exit the subroutine.

4. Write a subroutine that calls the subroutine of Prelim #3 and then displays the

received character on the terminal.

5. Write a subroutine to prompt the user to enter ten ASCII characters at the
terminal. An example of the input format is: ABCDE12345 <CR>. The routine
will then input these characters from the terminal, and then store them in a table
in memory (locations $900 to $909). When the table is full, transmit each
character out of ACIA #2 using the subroutine of Prelim #2, then exit the
subroutine.

6. Write a subroutine to receive ASCII characters from another lab unit (via ACIA
#2) using the subroutine of Prelim #3. As each character is received, its ASCII
code should be stored in a table in memory (locations $910 to $919). When the
table is full, display the received characters on the terminal, then exit this
subroutine.

B. Interrupt Implementation of Unit-to-Unit Communications

7. Write an initialization subroutine for ACIA #2. Configure the ACIA to operate as
follows:

• transmitter and receiver clocks set to divide-by-16 mode
• 8 data bits
• no parity bit
• 1 stop bit
• *RTS pin low
• transmitter interrupts disabled
• receiver interrupts enabled

8. Write an Interrupt Service Routine that queries ACIA #2 to determine the cause

of the interrupt request.

If the receiver section caused the interrupt, examine the error condition bits of the
Status Register.

If no receiver errors occurred, read the data from the RDR and store it into a 10
byte long table (locations $910 to $919) using Address Register A0 as the pointer
into the table. After storing the data, determine the condition of the table. If the
table is full, display its contents on the terminal, reinitialize the pointer to the

Saniie & Perich Experiment #8 - 5

starting address of the table, and then exit the routine. If the table is not full,
increment the pointer, then exit the interrupt service routine.

If an error occurred, print a message on the terminal indicating which type of
error occurred and the value of the received data. Exit the service routine.

Note: If the interrupt was generated by some condition other than received data,
disregard the interrupt.

9. Assemble each of the subroutines created above into the following program

format.

PROC1 MOVE.L #$TBD,A7 * TRANSMIT ONLY routine
 JSR SUBRT1 * ACIA init. - polling
LOOP1 JSR SUBRT2 * transmit a character.
 BRA LOOP1 * transmit continuously.

PROC2 MOVE.L #$TBD,A7 * RECEIVE ONLY routine
 JSR SUBRT1 * ACIA init. - polling
LOOP2 JSR SUBRT4 * display received char
 BRA LOOP2 * receive continuously

PROC3 MOVE.L #$TBD,A7 * TX and RX - POLLING
 JSR SUBRT1 * ACIA init. - polling
LOOP3 JSR SUBRT5 * transmit char block
 JSR SUBRT6 * receive char block.
 BRA LOOP3

PROC4 MOVE.L #$TBD,A7 * TX and RX - INTERRUPTS
 JSR SUBRT7 * ACIA init. - interrupts
LOOP4 JSR SUBRT5 * transmit char block
 BRA LOOP4

Notes:
a. The label “SUBRT1” is the name of the subroutine from Prelim #1, label

“SUBRT2” is the name of the subroutine from Prelim #2, and so on.
b. ‘TBD’ means ‘to be determined’ by user.

C. Terminal I/O Routines using the TRAP #15 Handler

10. Write two subroutines to control ACIA#1 on the SANPER-1 Educational Lab
Unit. This ACIA provides an input and output interface to the terminal. The
routines should be similar to those of TRAP 14 Handler Functions 241 and 243.
The proper registers must be initialized before the TRAP calling sequence is
invoked. Note that entering a Return <CR> terminates data entry at the terminal.

Saniie & Perich Experiment #8 - 6

11. The above routines can only be accessed by executing a TRAP #15 instruction in
your program. Modify the original source code of Experiment #4 by replacing all
TRAP #14 instructions with TRAP #15 instructions.

6.0 Procedure

Note: Bring graph paper to the lab for the purpose of recording waveforms.

A. Unit-to-Unit Communications

1. Use the Memory Modify (MM) command to store the character “i” into location
$900.

2. Initialize address register A0 to point to location $900.

3. Run the PROC1 program. The same ASCII character should be transmitted

continuously. Using an oscilloscope, observe the transmitted data on pin #3 (TX
DATA) of the DB-25 connector that connects to ACIA #2 on the SANPER-1
Educational Lab Unit. Also, connect a wire from pin #4 to pin #5 on the DB-25
connector to tie *CTS to *RTS. Record this waveform in its RS-232-C format,
and indicate the start, data, parity, and stop bits for this bit stream. From this
waveform, draw the corresponding TTL waveform, which is the actual output of
ACIA #2.

4. Modify PROC1 so that the transmitted character is now “S”. Run PROC1 again.

Record the RS-232-C waveform and indicate all four groups of bits. Draw the
TTL waveform. Repeat this procedure three additional times for the following
characters: “$”, “ESC”, “a”.

5. Ask your Lab Instructor to connect your lab unit to an adjacent lab unit. Execute

PROC1 on one on the lab units and PROC2 on the other. One of the terminals
should display the characters received from the other lab unit. Verify that you
have received the correct value and number of characters. Reverse the execution
of the programs on the lab units, and again verify that the other lab unit is
receiving and displaying characters properly.

6. Demonstrate to your Lab Instructor that Procedure Step #5 is working properly.

7. Leave your lab unit connected to an adjacent lab unit. Execute PROC3 on each

lab unit. Each group should transmit a block of 10 characters. Your terminal
should display the characters received from the other lab group. Through your
terminal, your lab group should be able to pass data back and forth to the other
lab group.

8. Demonstrate to your Lab Instructor that your polling routine (Procedure Step #7)

is working properly.

Saniie & Perich Experiment #8 - 7

9. Set the appropriate exception vector for ACIA #2 interrupt requests to point to the

starting address of the interrupt service routine, SUBRT8.

10. Leave your lab unit connected to an adjacent lab unit. Execute PROC4. Each lab
group should begin transmitting characters and your terminal should correctly
display the characters received from the other lab group.

11. Demonstrate to your Lab Instructor that your interrupt routine (Procedure Step

#10) is working properly.

B. Terminal I/O Routines

12. Set the exception vector of TRAP #15 to point to the starting address of
SUBRT10.

13. Execute the revised logic translator program. Your program should be able to

accept data from the terminal, perform the logic translation, and output data to
both the terminal and the User Display of the SANPER-1 Educational Lab Unit.

14. Enter the test data and verify that your program is working properly. Debug your

program using software breakpoints, software tracing, and the hardware single-
step mode.

15. Demonstrate to your Lab Instructor that the revised logic translator program
works properly.

Saniie & Perich Experiment #8 - 8

Saniie & Perich Experiment #8 - 9

7.0 Discussion

 Submit the following to your Lab Instructor as a Final Report:

1. Listing files of all your programs and subroutines which include both global and local

comments.

2. Drawings of the RS-232-C and TTL waveforms of the five different character words

from Procedures A.3 and A.4.

3. In Procedure step #7, one of the lab units did not receive one block of characters.

Why? How can this problem be solved?

4. Describe the advantages and disadvantages of implementing polling vs. interrupts.

5. List and explain which bits in the Status Register can cause an interrupt to occur.

6. The ACIA’s Status Register contains the value $A3. What is the status of the ACIA?

7. What are the characteristics of a communications system if the ACIA’s Control

Register contains $C2?

8. If the ACIA’s Control Register reads $81, determine what the parity bit must be when

transmitting each of the following characters: "!", "7", "N", "P".

	Quantity
	Description
	Quantity
	RS
	Interrupt Implementation of Unit-to-Unit Communications
	
	
	
	
	PROC1MOVE.L #$TBD,A7

	Terminal I/O Routines using the TRAP #15 Handler
	Unit-to-Unit Communications
	Terminal I/O Routines

