
EXPERIMENT #2

TUTOR COMMAND UTILIZATION and PROGRAM EXPERIMENTATION

1.0 Purpose

The purpose of this experiment is to acquaint the user with the TUTOR monitor program
and with the 68000 instruction set.

2.0 Component Requirements

None.

3.0 Background

One of the best methods for learning the MC68000 Instruction Set is to write an assembly
language program, enter it into the development system, execute it and debug it. In this
experiment, the user will be introduced to various MC68000 instructions and addressing
modes. The user will enter the code into the SANPER-1 ELU through the use of the
TUTOR Commands.

4.0 Statement of Problem

In this experiment, several sample programs are presented that may require
modifications. The user will be entering, executing, and debugging these programs, and
then answering questions that are raised throughout the programs.

5.0 Preliminary Assignment

1. Completely read all seven sample programs to familiarize yourself with their

objectives.
2. Review the 68000’s instructions and addressing modes. The user should read both

the “Data Organization and Address Capabilities” section and the “Instruction Set
Summary” section in the M68000 Programmer’s Reference Manual.

3. Review the TUTOR Command Set, which is described in the MC68000 Educational
Computer Board User’s Manual.

4. Procedure #8 of sample Program 2.6 requires that the student write a short MC68000
Assembly Language program. This student should have this program written before
coming to the lab.

Saniie & Perich Experiment #2 - 1

6.0 Procedure

Execute each sample program and record data when requested.

7.0 Discussion

Answer any questions that were asked in each sample program, and submit your answers
as a final report to your Lab Instructor.

Saniie & Perich Experiment #2 - 2

SAMPLE PROGRAM 2.1 - Fill a Block of Memory

Purpose:

This program fills any size block of memory with any desired value. In addition, this
program introduces the user to TUTOR’s program entering, executing and debugging
commands.

Given Information:

1. Starting address of memory block to be filled = $3100

(use an Address Register as a pointer)
2. Ending address of memory block to be filled = $3200

(use an Address Register as a pointer)
3. Data to be stored = $FFFF

(use a Data Register to hold the data)
4. Starting address of program = $300C

Procedure:

1. Enter the following program by using TUTOR's Memory Modify (MM) Command,

and invoking the disassembler.

TUTOR 1.X > MM $300C;DI <CR>

Address Instruction Comments
00300C MOVE.W D0,(A0)+ <CR> To be determined by user
00300E CMP.W A0,A1 <CR>
003010 BGE $300C <CR>
003012 MOVE.B #228,D7 <CR>
003016 TRAP #14 <CR>
003018 . <CR>

2. Examine the program and determine what registers need to be initialized, and what

values to initialize them to. Use TUTOR's Individual Register Set/Change Command
for this purpose.

3. Use TUTOR's Block Fill (BF) Command to initialize the memory block to a known

value.

TUTOR 1.3 > BF $3100 $3300 $AAAA <CR>

TUTOR Responds by outputting the following:

PHYSICAL ADDRESS=00003100 00003300

This statement indicates that the command was successfully completed.

Saniie & Perich Experiment #2 - 3

4. Execute a Memory Display (MD) Command to ensure that the memory fill operation
was performed properly.

TUTOR 1.3 > MD $3100 <CR>

16 bytes of data will be displayed. Each byte should be $AA. By typing in just a
<CR>, the user can continuously display 256 bytes of data. Verify that all locations
from $3100 to $3300 are filled with $AA.

5. Run the program using the GO (G) Command.

TUTOR 1.3 > G $300C <CR>

TUTOR will display the following on the screen.

PHYSICAL ADDRESS=0000300C

and the TUTOR prompt will appear.

6. Execute a Memory Display (MD) Command to ensure that the program worked

properly.

TUTOR 1.3 > MD $3100 <CR>

If the program executed correctly, $FF should be stored in each memory location
from $3100 to $3200, and $AA should be stored in each memory location from
$3202 to $3300.

7. Demonstrate to your Lab Instructor that the program works correctly.

8. Trace through the program by first initializing the Program Counter (PC), and then

invoking TUTOR's Trace (T) Command.

TUTOR 1.3 > .PC $300C <CR>

and then typing in:

TUTOR 1.3 > T <CR>

Note that TUTOR will display all the registers and will show the next instruction to
be executed. Notice that the prompt now changes to:

TUTOR 1.3 :>

Note: It is not necessary to trace completely through the TRAP #14 instruction.

9. Modify the program so that it performs the same function but uses the pre-decrement

addressing mode instead of the post-increment addressing mode for the instruction at

Saniie & Perich Experiment #2 - 4

address $300C. To enter changes to the existing program, use TUTOR's Memory
Modify (MM) Command, and invoke the disassembler.

10. Use TUTOR's Block Fill (BF) Command to initialize the memory block to some

known value.

TUTOR 1.3 > BF $3100 $3300 $BBBB <CR>

TUTOR responds by displaying the following:

PHYSICAL ADDRESS=00003100 00003300

This statement indicates that the command was successfully completed.

11. Execute a Memory Display (MD) Command to ensure that the memory fill operation

was performed properly.

TUTOR 1.3 > MD $3100 <CR>

16 bytes of data will be displayed. Each byte should be $AA. By typing in just a
<CR>, the user can continuously display 256 bytes of data. Verify that all locations
from $3100 to $3300 are filled with $AA.

12. Run the program using the GO (G) Command.

TUTOR 1.3 > G $300C <CR>

TUTOR will display the following on the screen.

PHYSICAL ADDRESS=0000300C

and the TUTOR prompt will appear.

13. Execute a Memory Display (MD) Command to ensure that the program worked

properly.

TUTOR 1.3 > MD $3100 <CR>

If the program executed correctly, $FF should be stored in each memory location
from $3100 to $3200, and $AA should be stored in each memory location from
$3202 to $3300.

14. Demonstrate to your Lab Instructor that the program works correctly.

Saniie & Perich Experiment #2 - 5

Discussion:

Submit the following to your Lab Instructor as part of the Final Report:

1. A fully commented version of the original program (it must include both global and

local comments)

2. A fully commented version of the program written for Procedure #9. (it must include

both global and local comments)

3. Discuss the function of each register used in the original program.

4. Discuss the advantages of the pre-decrementing and post-incrementing addressing

modes.

Saniie & Perich Experiment #2 - 6

SAMPLE PROGRAM 2.2 - Outputting a Character to the Terminal

Purpose:

This program introduces the user to the concept of TRAPs, and to TUTOR’s TRAP 14
Handler. This program will use one of the TRAP routines to repeatedly output a single
character to the terminal.

Given Information:

The character to be outputted is the capital letter 'A'.

Procedure:

1. Enter the following program by using TUTOR's Memory Modify (MM) Command,

and invoking the disassembler.

TUTOR 1.3 > MM $900;DI <CR>

Address Instruction Comments
000900 MOVE.B #$??,D0 <CR> To be determined by user
000904 MOVE.B #248,D7 <CR>
000908 TRAP #14 <CR>
00090A MOVE.L #$FFFF,D5 <CR>
000910 DBEQ D5,$910 <CR>
000914 BRA $900 <CR>
000916 . <CR>

2. Determine the value of the expression ?? in the instruction at address $900, and insert

the proper value into the instruction.

3. Run the program using the GO (G) Command.

TUTOR 1.3 > G $900 <CR>

TUTOR will display the following on the screen.

PHYSICAL ADDRESS=00000900

and the letter A should repeatedly appear on the screen.

4. Press the ABORT Switch on the SANPER-1 Unit's Front Panel in order to break out

of the program's loop.

5. Change the original character (A) to another ASCII character by sequencing through

the program byte by byte until the character A is encountered and modify this

Saniie & Perich Experiment #2 - 7

location to the ASCII value for the number 5. Use the Memory Modify (MM)
Command to do this but to not invoke the disassembler.

TUTOR 1.3 > MM $900 <CR>

6. Run the program using the GO (GO) Command.

TUTOR 1.3 > G $900 <CR>

TUTOR will display the following on the screen.

PHYSICAL ADDRESS=00000900

and the number 5 should repeatedly appear on the screen.

7. Press the ABORT Switch on the SANPER-1 Unit's Front Panel in order to break out

of the program's loop.

8. Demonstrate to your Lab Instructor that the program works correctly.

9. Change the value $FFFF to $000F in the instruction at address $90A. You may either

retype the entire instruction or simply change the bytes of code where $FFFF is
located as shown below.

TUTOR 1.3 > MM $900 <CR>

00090E FF ? 00 <CR>
00090F FF ? 0F <CR>
000910 XX ? . <CR>

10. Run the program using the GO (G) Command.

TUTOR 1.3 > G $900 <CR>

TUTOR will display the following on the screen.

PHYSICAL ADDRESS=00000900

By examining the terminal screen, determine what differences, if any, have occurred
since the last time you ran the program. In other words, what effect did procedure #9
have on the program? Record your findings.

11. Press the ABORT Switch on the SANPER-1 Unit's Front Panel in order to break out

of the program's loop.

Saniie & Perich Experiment #2 - 8

Discussion:

Submit the following to your Lab Instructor as part of the Final Report:

1. A fully commented version of the original program (it must include both local and

global comments).

2. List the and explain the results of procedure #10

3. Write a subroutine that outputs any character once. The character to be outputted will

be passed to this subroutine through Data Register D1. Note: you are not required to
execute this program on the SANPER-1 ELU.

4. What is the effect of changing the instruction at address $914 to "BRA 904"?

5. Outline the steps involved in the execution of the instructions at addresses $90A and

$910. Discuss the usefulness of this combination of instructions.

6. List the major benefits of using TRAP instructions.

Saniie & Perich Experiment #2 - 9

SAMPLE PROGRAM 2.3 - Outputting a String to the Terminal

Purpose:

The purpose of this program is to demonstrate the capability of another TRAP 14 Handler
function available within the TUTOR firmware. We will use a function that outputs a
string to the terminal.

Given Information:

1. Starting address of the string buffer = $1000
2. Ending address of the string buffer = $1017
3. TUTOR's TRAP Function No. 227 outputs a string followed by a carriage return

(CR) and a line feed (LF) to Port 1 (the terminal port).
4. TUTOR's TRAP Function No. 228 returns program control from the user program

back to TUTOR.
5. Starting address of the program = $950

Procedure:

1. Enter the following program by using TUTOR's Memory Modify (MM) Command,

and invoking the disassembler.

TUTOR 1.3 > MM $950;DI <CR>

Address Instruction Comments
000950 MOVE.L #$??,A5 <CR> To be determined by user
000956 MOVE.L #$??,A6 <CR>
00095C MOVE.B #227,D7 <CR>
000960 TRAP #14 <CR>
000962 MOVE.B #228,D7 <CR>
000966 TRAP #14 <CR>
000968 . <CR>

2. Determine the value of the expression ?? in the instructions at addresses $950 and

$956, and insert the value into the instruction.

3. Use the Memory Set (MS) Command to load a string into memory.

TUTOR 1.3 > MS $1000 'WELCOME TO THE 68000 LAB'

This command loads the equivalent ASCII character value of each letter into
memory. This is the string that will be outputted to the terminal.

4. To ensure that the string was entered into memory correctly, use TUTOR's Block of

Memory Search (BS) Command to search user memory for the string.

Saniie & Perich Experiment #2 - 10

TUTOR 1.3 > BS $900 $3FFF 'WELCOME TO THE 68000 LAB'

If the string was properly stored, TUTOR will display the following:

PHYSICAL ADDRESS=00000900 00003FFF
001000 'WELCOME TO THE 68000 LAB'

5. Run the program using the GO (G) Command.

TUTOR 1.3 > G $950 <CR>

TUTOR will display the following on the screen.

PHYSICAL ADDRESS=00000950

and the string 'WELCOME TO THE 68000 LAB' should appear once, followed by
the TUTOR prompt on the next line.

6. If your program is not working properly, use the Trace (T) and Breakpoint (BR)

Commands to debug it.

7. Demonstrate to your Lab Instructor that your program works correctly.

Discussion:

Submit the following to your Lab Instructor as part of the Final Report:

1. A fully commented version of the original program (it must include both global and

local comments)

2. Discuss how you would have implemented this program were TRAP Function No.

227 not available.

3. After executing the program, what is the final value of A5, and why?

Saniie & Perich Experiment #2 - 11

SAMPLE PROGRAM 2.4 - Pattern Match

Purpose:

This program compares two ASCII strings in memory to determine if they are identical.

Given Information:

1. The starting address of string #1 is $2000.
2. The starting address of string #2 is $3000.
3. The first byte of each string specifies the string length.
4. If the strings match, store $00 in location $1100.
5. If the strings do not match, store $FF in location $1100.
6. Data register D0 holds the length of the string.
7. Data register D1 holds the result of the comparison.
8. The starting address of the program is $1000.

Procedure:

1. Enter the following program by using TUTOR's Memory Modify (MM) Command,

and invoking the disassembler.

TUTOR 1.3 > MM $1000;DI <CR>

Address Instruction Comments
001000 MOVE.L #$????,A0 <CR> To be determined by user
001006 MOVE.L #$????,A1 <CR>
00100C MOVEQ.L #-1,D1 <CR>
00100E MOVEQ.L #0,D0 <CR>
001010 MOVE.B (A0),D0 <CR>
001012 CMPM.B (A0)+,(A1)+ <CR>
001014 DBNE D0,$???? <CR>
001018 BNE.S $101C <CR>
00101A NOT.B D1 <CR>
00101C MOVE.B D1,$1100 <CR>
001020 MOVE.B #228,D7 <CR>
001024 TRAP #14 <CR>
001026 . <CR>

2. Determine the value of the expression ???? in the instructions at addresses $1000,

1006, and $1014 and insert the correct value into the appropriate instruction.

3. Load two strings into memory using the Memory Set (MS) Command.

TUTOR 1.3 > MS $2001 'MC68000 MICROPROCESSOR'
TUTOR 1.3 > MS $3001 'MC68000 MICROPROCESSOR'

Saniie & Perich Experiment #2 - 12

4. Verify that the strings were properly stored by searching all of user memory to
determine if the strings are present. Use TUTOR's Block of Memory Search (BS)
Command.

TUTOR 1.3 > BS $900 $3FFF 'MC68000 MICROPROCESSOR'

If the strings were properly stored, TUTOR will display the following:

PHYSICAL ADDRESS=00000900 00003FFF
002001 'MC68000 MICROPROCESSOR'
003001 'MC68000 MICROPROCESSOR'

5. Load the string length into the first byte of each string.

A. Load in the number of bytes (in hexadecimal) for string #1.
TUTOR 1.3 > MM $2000 <CR>

002000 XX ? 16 <CR>
002001 xx ? . <CR>

B. Load in the number of bytes (in hexadecimal) for string #2.

TUTOR 1.3 > MM $3000 <CR>

003000 XX ? 16 <CR>
003001 XX ? . <CR>

6. To ensure that the program works properly, we will initialize the comparison result

location before running the program. We will load $AAAA into location $1100 using
the Memory Modify (MM) Command.

TUTOR 1.3 > MM $1100 <CR>
001100 XX ? AA <CR>
001101 XX ? AA <CR>
001102 XX ? . <CR>

7. Run the program using the GO (G) Command.

TUTOR 1.3 > G $1000 <CR>

TUTOR will display the following on the screen:

PHYSICAL ADDDRESS=00001000

and then the TUTOR prompt will appear.

Saniie & Perich Experiment #2 - 13

8. Examine the contents of location $1100 to determine the result of the comparison.

TUTOR 1.3 > MM $1100 <CR>

001100 00 ? <CR>
001101 AA ? . <CR>

Did the strings match or not?

9. Modify the text of string #2 from "68000" to "68001" by changing the contents of

location $3007 from $30 to $31.

TUTOR 1.3 > MM $3007 <CR>

003007 30 ? 31 <CR>
003008 20 ? . <CR>

10. To verify that the program works properly, we will once again initialize the

comparison result location before running the program.

TUTOR 1.3 > MM $1100 <CR>

001100 XX ? AA <CR>
001101 XX ? AA <CR>
001102 XX ? . <CR>

11. Run the program using the GO (G) Command.

TUTOR 1.3 > G $1000 <CR>

TUTOR will display the following on the terminal:

PHYSICAL ADDDRESS=00001000

and then the TUTOR prompt will appear.

12. Examine the contents of location $1100 to determine the result of the comparison.

TUTOR 1.3 > MM $1100 <CR>

001100 FF ? <CR>
001101 XX ? . <CR>

Did the strings match or not?

13. Demonstrate to your Lab Instructor that your program works correctly.

Saniie & Perich Experiment #2 - 14

Discussion:

Submit the following to your Lab Instructor as part of the Final Report:

1. A fully commented version of the original program (it must include both global and

local comments).

2. Draw a flowchart for the program.

3. Describe the differences between the MOVE and MOVEQ instructions. Under what

conditions is it advantageous to use one instruction over the other?

4. Discuss the usefulness of the CMPM instruction.

5. What instruction sets the Condition Code bits for the BNE instruction at address

$1018?

Saniie & Perich Experiment #2 - 15

SAMPLE PROGRAM 2.5 - Bubble Sort

Purpose:

This program sorts a string of elements (each 16-bits wide), in such a manner that when
the sort is completed, the largest number will be at the lowest memory location, and the
smallest number will be at the highest memory location. Thus the large numbers bubble
up to low memory.

Given Information:

1. Address register A0 points to the first element in the list, which is located at address

$2100.
2. Address register A1 points to the last element in the list, which is located at address

$210E.
3. Address register A2 holds a copy of the starting address of the list.
4. Starting address of the program = $2000.

Procedure:

1. Enter the following program by using TUTOR's Memory Modify (MM) Command,

and invoking the disassembler.

TUTOR 1.3 > MM $2000;DI <CR>

Address Instruction Comments
002000 MOVE.L A0,A2 <CR> To be determined by user
002002 MOVE.L A2,A0 <CR>
002004 CMP.W (A0)+,(A0)+ <CR>
002006 BHI.S $2014 <CR>
002008 SUBQ.L #2,A0 <CR>
00200A CMP.L A0,A1 <CR>
00200C BNE $2004 <CR>
00200E MOVE.B #228,D7 <CR>
002012 TRAP #14 <CR>
002014 MOVE.L –(A0),D0 <CR>
002016 SWAP.W D0 <CR>
002018 MOVE.L D0,(A0) <CR>
00201A BRA $2002 <CR>
00201C . <CR>

2. Use the Memory Modify (MM) Command to load a table of data into memory.

TUTOR 1.3 > MM $2000;DI <CR>

002100 XXXX ? 0000 <CR>
002102 XXXX ? 0010 <CR>
002104 XXXX ? 0020 <CR>
002106 XXXX ? 0030 <CR>
002108 XXXX ? 0040 <CR>

Saniie & Perich Experiment #2 - 16

00210A XXXX ? 0050 <CR>
00210C XXXX ? 0060 <CR>
00210E XXXX ? 0070 <CR>
002110 XXXX ? . <CR>

where XXXX = previous data values which we treat as don't cares.

3. Initialize Address Register A0 to the start of the string and Address Register A1 to the

end of the string, by using TUTOR's Individual Display / Set Register Command.

TUTOR 1.3 > .A0 $2100 <CR>
TUTOR 1.3 > .A1 $210E <CR>

4. Examine the contents of Address Registers A0 and A1 to ensure that they were

properly initialized.

TUTOR 1.3 > .A0 <CR>

TUTOR responds with:

A0=00002100

TUTOR 1.3 > .A1 <CR>

TUTOR responds with:

A1=0000210E

5. Run the program using the GO (G) Command.

TUTOR 1.3 > G $2000 <CR>

TUTOR will display the following on the screen:

PHYSICAL ADDRESS=00002000

and then the TUTOR prompt will appear.

6. Examine the contents of memory to determine if the sort operation was successfully
completed. If the sort was performed correctly, the data should appear in memory as
shown below.

Use the Memory Modify (MM) Command to examine the table entries.

TUTOR 1.3 > MM $2100;W <CR>

002100 0070 ? <CR>
002102 0060 ? <CR>
002104 0050 ? <CR>
002106 0040 ? <CR>

Saniie & Perich Experiment #2 - 17

002108 0030 ? <CR>
00210A 0020 ? <CR>
00210C 0010 ? <CR>
00210E 0000 ? <CR>
002110 XXXX ? . <CR>

7. Demonstrate to you Lab Instructor that you program works correctly.

Discussion:

Submit the following to your Lab Instructor as part of the Final Report:

1. A fully commented version of the original program (it must include both global and

local comments).

2. Examine the program and describe how the sorting algorithm has been implemented.

3. Describe the significance of the SWAP instruction. Assume for a moment that the

68000 does not have a SWAP instruction. List the set of instructions, in the proper
sequence that are necessary to replace the SWAP instruction.

4. Describe the function and advantages of the ADDQ and SUBQ instructions.

5. Describe the differences between the ADD and ADDQ instructions.

6. Describe the differences between the SUB and SUBQ instructions.

7. Describe the sequence of events that occurs during the execution of the instruction

located at address $2004.

Saniie & Perich Experiment #2 - 18

SAMPLE PROGRAM 2.6 – Adding a Number to a Sorted List

Purpose:

This program inserts a new number into the proper location within a sorted or sequenced
list. This program is to be run only after executing Sample Program 2.5.

Given Information:

1. Address register A0 points to the first element in the list.
2. Address register A1 points to the last element in the list.
3. Data is moved up in memory (towards lower addresses) to make room for the new

number.
4. The starting address of the program is $3000.

Procedure:

1. Enter the following program by using TUTOR's Memory Modify (MM) Command,

and invoking the disassembler.

TUTOR 1.3 > MM $3000;DI <CR>

Address Instruction Comments
003000 CMP.W (A0),D0 <CR> To be determined by user
003002 BCC $300C <CR>
003004 MOVE.W (A0),-(A0) <CR>
003006 ADDQ #4,A0 <CR>
003008 CMPA.L A0,A1 <CR>
00300A BCC $3000 <CR>
00300C MOVE.W D0,-(A0) <CR>
00300E MOVE.B #228,D7 <CR>
003012 TRAP #14 <CR>
003014 . <CR>

2. Initialize Data Register D0 to the value of the new word of data.

TUTOR 1.3 > .D0 $0055 <CR>

Examine the data register.

TUTOR 1.3 > .D0 <CR>

TUTOR displays the following:

D0=00000055

3. Initialize Address Registers A0 and A1 by using TUTOR's Individual Display/Set

Register Command.

Saniie & Perich Experiment #2 - 19

TUTOR 1.3 > .A0 $2100 <CR>
TUTOR 1.3 > .A1 $210E <CR>

4. Using TUTOR's Individual Display / Set Register Command, verify that Address

Registers A0 and A1 were initialized correctly.

TUTOR 1.3 > .A0 <CR>

TUTOR responds as follows:

A0=00002100

TUTOR 1.3 > .A1 <CR>

TUTOR responds as follows:

A1=0000210E

5. Run the program using the GO (G) Command.

TUTOR 1.3 > G $3000 <CR>

TUTOR displays the following:

PHYSICAL ADDRESS=00003000

and then the TUTOR prompt appears.

6. Examine the sequenced list to determine if the insert operation was performed

properly. The list should appear in memory as follows:

TUTOR 1.3 > MM $20FE;W <CR>

0020FE 0070 ? <CR>
002100 0060 ? <CR>
002102 0055 ? <CR>
002104 0050 ? <CR>
002106 0040 ? <CR>
00210A 0020 ? <CR>
00210C 0010 ? <CR>
00210E 0000 ? <CR>
002110 XXXX ? . <CR>

Notice that the list grew towards lower memory addresses.

7. Demonstrate to your Lab Instructor that the program works properly.

8. Write a program that inputs a 4-digit hexadecimal number (word) from the terminal

and inserts it into the proper location in the sorted list. You will have to input the

Saniie & Perich Experiment #2 - 20

Saniie & Perich Experiment #2 - 21

number from the keyboard, convert it from ASCII to hexadecimal and then call the
original insertion routine. Hint: Use TUTOR's Trap 14 Handler.

9. Demonstrate to your Lab Instructor that the program from Procedure Step #8 works

correctly.

Discussion:

Submit the following to your Lab Instructor as part of the Final Report:

1. A fully commented version of both programs (they must include both global and local

comments)

2. Draw a flowchart of the program, and discuss the insertion algorithm.

	MOVE.W D0,(A0)+ <CR>

