Experiment No. 5 Frequency Response of Active Networks ECE 213

Peter CHINETTI

October 29, 2013

Date Performed: October 23, 2013 Instructor: Professor Shanechi

1 Introduction

Filters are often used to modify and process analog signals. Filters are needed in electronic systems to amplify certain frequency components of a composite signal and to attenuate other frequency components. This lab had the experimenters build two types of active filters: the Butterworth and the Chebyshev.

2 Background

A second order voltage transfer function for a low-pass filter can be expressed as:

$$\frac{V_2(s)}{V_1(s)} = \frac{H_0 \omega_n^2}{s^2 + s\frac{\omega_n}{\Omega} + \omega_n^2}$$
(1)

When implementing this transfer function in hardware, an op-amp in noninverting configuration is paired with external resistors and capacitors. Figure 1 is the diagram for the non-inverting amplifier, figure 2 is the external circuit. In figure 2, the op-amp with its input tied together is a stand in for the noninverting amplifier circuit. In figures 3 and 4, the values for all components are listed.

Figure 1: Non-inverting amplifier

ω_n	5287
Q	1.306
R	$20 \text{ k} \Omega$
С	$9.4 \mathrm{nF}$
Gain	2.2243
R_b	$240 \ \Omega$
R_a	$200 \ \Omega$

Figure 3: Chebyshev Filter

Figure 2: Second order filter

ω_n	6283
Q	0.707
R	$15~{\rm k}~\Omega$
С	10 nF
Gain	1.585
R_b	$240~\Omega$
R_a	470 Ω

Figure 4: Butterworth Filter

3 Procedure

- a. Calculate resistance and capacitance values for each circuit.
- b. Build circuits.
- c. Set function generator to sweep output, with logarithmic sweep rate.
- d. Set scope to a slow sweep rate.
- e. Time single sweep with scope with sweep out of function generator.

4 Equipment

- Oscilloscope
- Function generator
- Resistors
- Capacitors

5 Data and Graphs

5.1 Input Function

5.2 Chebyshev Filter

5.3 Butterworth Filter

6 Conclusions

The purpose of this lab was achieved. A Butterworth and a Chebyshev fiter with a 1kHz cutoff were built and tested. Both filters seemed to have very similar responses.