NAME:Peter Chinetti
COLLABORATOR(S): Krishen Blows. Krishen and I sat together to understand what this lab was asking for, and after understanding that it was to simply run simulations, decided to run the simulations entirely on my server. My server has a lot more 'horse power' than either of our two laptops. The analysis however, was done independently.
CS480 – HOMEWORK 4
Assigned on: Friday, 9/20/2013
Due: Sunday, 9/29/2013, 11:59pm
There is only one question. Please submit your solution through black board assignment page.

1. [100 points] In this assignment, you will write code to compare Iterative Deepening Search and A* search using three different heuristics. For randomly generated 8-puzzle boards, you will compare the total number of nodes expanded and the total time for these algorithms. Please download the attached java files.

Compare the following algorithms:

· Iterative Deepening Search
· A* search with misplaced tile heuristic
· A* search with Manhattan distance heuristic
· A* search with iterative deepening search
To run the first three algorithms, the attached code is sufficient. For the last one, A* search with iterative deepening search, you need to write code for the IterDeepHeuristicFunction.java. What you are supposed to do is to run iterative deepening search, and find the optimal path cost, and return that as your heuristic value.
Fill in the following two tables and answer the respected questions. If you are not able to run an algorithm due to time or memory issues, please note it on its row/column.
[bookmark: _GoBack]Do not submit code. Submit only the requested information.

Question 1: Please provide details on the computer you ran the simulations on.
Processor: 2x Intel Xeon E5410
RAM size: 8GB
OS: Ubuntu Server 12.04.3 LTS

Table Average number of nodes expanded by each algorithm.
	Depth
	Iterative Deepening
	A* - Misplaced Tiles
	A* - Manhattan Distance
	A* - IterDeep

	1
	1
	1
	1
	1

	2
	3
	2
	2
	2

	3
	11
	3
	3
	3

	4
	33
	4
	4
	4

	5
	109
	6
	5
	5

	6
	300
	10
	7
	6

	7
	824
	20
	10
	7

	8
	1513
	31
	15
	11

	9
	6800
	125
	34
	9

	10
	16493
	346
	55
	11

	11
	54251
	442
	77
	14

	12
	104619
	474
	41
	12

	13
	446391
	2451
	253
	16

	14
	1267086
	12659
	1376
	14

	15
	3346634
	39080
	3121
	Timeout

	16
	6360708
	73804
	9970
	

	17
	24049131
	120879
	9768
	

	18
	64253216
	266482
	7794
	

	19
	201687132
	834700
	5543
	

	20
	816230824
	2448255
	185235
	

	21
	Memory
	5097311
	539616
	

	22
	
	Timeout
	198678
	

	23
	
	
	303415
	

	24
	
	
	295509
	

	25
	
	
	
	

Question 2: Which algorithm expanded the fewest number of nodes on average? Why?
A * IterDeep expanded the fewest nodes, because its heuristic always choses the best path by repeatedly solving the problem.
Table 2 Average time.
	Depth
	Iterative Deepening
	A* - Misplaced Tiles
	A* - Manhattan Distance
	A* - IterDeep

	1
	0.006500
	0.010500
	0.009500
	0.014500

	2
	0.000750
	0.000750
	0.000750
	0.022250

	3
	0.001875
	0.001375
	0.001000
	0.037375

	4
	0.005200
	0.001700
	0.001300
	0.040200

	5
	0.007700
	0.001900
	0.001500
	0.031800

	6
	0.017800
	0.002800
	0.001400
	0.062100

	7
	0.025200
	0.004800
	0.001900
	0.148400

	8
	0.016500
	0.005000
	0.002100
	0.357500

	9
	0.018200
	0.009500
	0.003400
	1.082000

	10
	0.038600
	0.010600
	0.004600
	3.762700

	11
	0.128500
	0.011100
	0.004100
	11.418700

	12
	0.227300
	0.006100
	0.001800
	22.565500

	13
	0.893200
	0.022400
	0.001800
	90.670400

	14
	2.608200
	0.117900
	0.019400
	

	15
	6.754000
	0.414100
	0.031800
	

	16
	13.231300
	0.784200
	0.112600
	

	17
	50.683000
	1.392000
	0.111800
	

	18
	136.265700
	3.221000
	0.081100
	

	19
	422.971000
	10.843500
	0.707400
	

	20
	1156.341800
	38.848400
	3.639500
	

	21
	3563.354600
	
	15.637900
	

	22
	
	
	2.934200
	

	23
	
	
	4.733500
	

	24
	
	
	4.377000
	

	25
	
	
	
	

Question 3: Which algorithm was the fastest on average, and why?
A * Manhattan Distance because the Manhattan Distance heuristic is best suited to the problem.
Question 4: Which algorithm would you prefer and why?
A * Manhattan Distance because it completes the problem most quickly without using obscene amounts of memory.
