
xv6 Overview
CS 450 : Operating Systems
Michael Saelee <lee@iit.edu>

1

Computer
ScienceScience

Agenda
- Architectural overview

- Features & limitations

- Hardware dependencies/features

2

Computer
ScienceScience

Agenda
- Code review:

- Headers and Process structures

- Bootstrap procedure

- Scheduling & Context switching

- Sleep & Wakeup

- Trap / Syscall mechanism

3

Computer
ScienceScience

§Architectural Overview

4

Computer
ScienceScience

xv6 is a monolithic, preemptively-multitasked,
multiprocessor-capable, 32-bit, UNIX-like
operating system

5

Computer
ScienceScience

some limitations:

- max addressable memory: 2GB

- few supported devices (e.g., no network)

- no support for kernel-level threading

6

Computer
ScienceScience

Kernel

shell cat
user
space

kernel
space

system
call

Figure 0-1. A kernel and two user processes.

process

System call Description
fork() Create process
exit() Terminate current process
wait() Wait for a child process to exit
kill(pid) Terminate process pid
getpid() Return current process’s id
sleep(n) Sleep for n seconds
exec(filename, *argv) Load a file and execute it
sbrk(n) Grow process’s memory by n bytes
open(filename, flags) Open a file; flags indicate read/write
read(fd, buf, n) Read n byes from an open file into buf
write(fd, buf, n) Write n bytes to an open file
close(fd) Release open file fd
dup(fd) Duplicate fd
pipe(p) Create a pipe and return fd’s in p
chdir(dirname) Change the current directory
mkdir(dirname) Create a new directory
mknod(name, major, minor) Create a device file
fstat(fd) Return info about an open file
link(f1, f2) Create another name (f2) for the file f1
unlink(filename) Remove a file

The rest of this chapter outlines xv6’s services—processes, memory, file descrip-
tors, pipes, and file system—and illustrates them with code snippets and discussions of
how the shell uses them. The shell’s use of system calls illustrates how carefully they
have been designed.

The shell is an ordinary program that reads commands from the user and exe-
cutes them, and is the primary user interface to traditional Unix-like systems. The fact
that the shell is a user program, not part of the kernel, illustrates the power of the sys-
tem call interface: there is nothing special about the shell. It also means that the shell
is easy to replace; as a result, modern Unix systems have a variety of shells to choose
from, each with its own user interface and scripting features. The xv6 shell is a simple
implementation of the essence of the Unix Bourne shell. Its implementation can be
found at line (7850).

Processes and memory

DRAFT as of August 28, 2012 8 http://pdos.csail.mit.edu/6.828/xv6/

limited syscall API:

7

Computer
ScienceScience

very limited set of user-level programs:

- shell, cat, echo, grep, kill,
ln, ls, mkdir, rm, wc

- no compiler/editor

- development (kernel/user) happens
elsewhere!

8

Computer
ScienceScience

§Hardware
Dependencies / Features

9

Computer
ScienceScience

xv6 runs on an x86 (Intel) processor, and
relies on many of its hardware features

e.g.,	privilege levels (kernel/user mode),
	 interrupt vector & procedure,
	 segmentation & paging (VM)

10

Computer
ScienceScience

Recall: 2-bit current privilege level (CPL) flag

- CPL=3 ➞ “user” mode

- CPL=0 ➞ “supervisor/kernel” mode

- guards special instructions & hardware

- also restricts access to interrupt
& VM structures

11

Computer
ScienceScience

CPL is actually part of the %cs register,
which specifies the code segment address

%cs and %eip (x86 PC) identify an
instruction to execute and its privilege level

12

Computer
ScienceScience

but CPL cannot be modified directly!

- lower (raise priority) via int instruction

- raise (lower priority) via iret instruction

13

Computer
ScienceScience

int instruction (and h.w. interrupt) result
in interrupt descriptor table (IDT) lookup

- fetches target %cs and %eip (aka
“gate”) for corresponding handler

- restricts entry points into kernel

14

Computer
ScienceScience

xv6 also relies on x86 segmentation and
paging to implement virtual memory

15

Computer
ScienceScience

3-2 Vol. 3A

PROTECTED-MODE MEMORY MANAGEMENT

segment, the segment type, and the location of the first byte of the segment in the
linear address space (called the base address of the segment). The offset part of the
logical address is added to the base address for the segment to locate a byte within
the segment. The base address plus the offset thus forms a linear address in the
processor’s linear address space.

If paging is not used, the linear address space of the processor is mapped directly
into the physical address space of processor. The physical address space is defined as
the range of addresses that the processor can generate on its address bus.

Because multitasking computing systems commonly define a linear address space
much larger than it is economically feasible to contain all at once in physical memory,
some method of “virtualizing” the linear address space is needed. This virtualization
of the linear address space is handled through the processor’s paging mechanism.

Paging supports a “virtual memory” environment where a large linear address space
is simulated with a small amount of physical memory (RAM and ROM) and some disk

Figure 3-1. Segmentation and Paging

Global Descriptor
Table (GDT)

Linear Address
Space

Segment
Segment
Descriptor

Offset

Logical Address

Segment
Base Address

Page

Phy. Addr.
Lin. Addr.

Segment
Selector

Dir Table Offset
Linear Address

Page Table

Page Directory

 Entry

Physical

Space

Entry

(or Far Pointer)

PagingSegmentation

Address

Page

16

Computer
ScienceScience

3-6 Vol. 3A

PROTECTED-MODE MEMORY MANAGEMENT

Access checks can be used to protect not only against referencing an address outside
the limit of a segment, but also against performing disallowed operations in certain
segments. For example, since code segments are designated as read-only segments,
hardware can be used to prevent writes into code segments. The access rights infor-
mation created for segments can also be used to set up protection rings or levels.
Protection levels can be used to protect operating-system procedures from unautho-
rized access by application programs.

3.2.4 Segmentation in IA-32e Mode
In IA-32e mode of Intel 64 architecture, the effects of segmentation depend on
whether the processor is running in compatibility mode or 64-bit mode. In compati-
bility mode, segmentation functions just as it does using legacy 16-bit or 32-bit
protected mode semantics.

Figure 3-4. Multi-Segment Model

Linear Address Space
(or Physical Memory)

Segment
Registers

CS

Segment
Descriptors

LimitAccess
Base Address

SS LimitAccess
Base Address

DS LimitAccess
Base Address

ES LimitAccess
Base Address

FS LimitAccess
Base Address

GS LimitAccess
Base Address

LimitAccess
Base Address

LimitAccess
Base Address

LimitAccess
Base Address

LimitAccess
Base Address

Stack

Code

Data

Data

Data

Data

Segment descriptors

17

Computer
ScienceScience

“Flat” model

3-4 Vol. 3A

PROTECTED-MODE MEMORY MANAGEMENT

FFFF_FFF0H. RAM (DRAM) is placed at the bottom of the address space because the
initial base address for the DS data segment after reset initialization is 0.

3.2.2 Protected Flat Model
The protected flat model is similar to the basic flat model, except the segment limits
are set to include only the range of addresses for which physical memory actually
exists (see Figure 3-3). A general-protection exception (#GP) is then generated on
any attempt to access nonexistent memory. This model provides a minimum level of
hardware protection against some kinds of program bugs.

Figure 3-2. Flat Model

Figure 3-3. Protected Flat Model

Linear Address Space
(or Physical Memory)

Data and

FFFFFFFFHSegment

LimitAccess
Base Address

Registers
CS

SS

DS

ES

FS

GS

Code

0

Code- and Data-Segment
Descriptors

Stack

Not Present

Linear Address Space
(or Physical Memory)

Data and

FFFFFFFFH
Segment

LimitAccess
Base Address

Registers

CS

ES

SS

DS

FS

GS

Code

0

Segment
Descriptors

LimitAccess
Base Address

Memory I/O

Stack

Not Present
18

Computer
ScienceScience

IA-32 paging (4KB pages)

4-12 Vol. 3A

PAGING

Figure 4-2. Linear-Address Translation to a 4-KByte Page using 32-Bit Paging

Figure 4-3. Linear-Address Translation to a 4-MByte Page using 32-Bit Paging

0
Directory Table Offset

Page Directory

PDE with PS=0

CR3

Page Table

PTE

4-KByte Page

Physical Address

31 21 111222
Linear Address

32

10

12

10

20

20

0
Directory Offset

Page Directory

PDE with PS=1

CR3

4-MByte Page

Physical Address

31 2122
Linear Address

10

22

32

18

19

Computer
ScienceScience

Physical Page Number
A
V
L

D

6

A

5

C
D

4

W
T

3

U

2

W

1

P

078910111231

P

W

U

WT

CD

A

D

AVL

- Present

- Writable

- User

- 1=Write-through, 0=Write-back

- Cache Disabled

- Accessed

- Dirty (0 in page directory)

- Available for system use

20

VIrtual address Physical Address
1210

Dir Table Offset

10

0

1

1023

PPN Flags

20 12

12

PPN Offset

PPN Flags

0

1

1023

20 12

Page Table

CR3

Page table and page directory
entries are identical except for
the D bit.

Figure 2-1. x86 page table hardware.

whether instructions are allowed to issue writes to the page; if not set, only reads and
instruction fetches are allowed. PTE_U controls whether user programs are allowed to
use the page; if clear, only the kernel is allowed to use the page. Figure 2-1 shows how
it all works. The flags and all other page hardware related structures are defined in
mmu.h (0200).

A few notes about terms. Physical memory refers to storage cells in DRAM. A
byte of physical memory has an address, called a physical address. Instructions use
only virtual addresses, which the paging hardware translates to physical addresses, and
then sends to the DRAM hardware to read or write storage. At this level of discussion
there is no such thing as virtual memory, only virtual addresses.

Process address space

The page table created by entry has enough mappings to allow the kernel’s C
code to start running. However, main immediately changes to a new page table by
calling kvmalloc (1757), because kernel has a more elaborate plan for describing pro-
cess address spaces.

Each process has a separate page table, and xv6 tells the page table hardware to
switch page tables when xv6 switches between processes. As shown in Figure 2-2, a
process’s user memory starts at virtual address zero and can grow up to KERNBASE, al-
lowing a process to address up to 2 GB of memory. When a process asks xv6 for
more memory, xv6 first finds free physical pages to provide the storage, and then adds

DRAFT as of August 28, 2012 26 http://pdos.csail.mit.edu/6.828/xv6/

PTE_U+code
kvmalloc+code

20

Computer
ScienceScience

§Demo & Code Review

21

