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What is a file?

- some logical collection of  data

- format/interpretation is (typically) of  
little concern to OS
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A filesystem is a collection of  files

- supports a managed namespace of  data

- maps & manages file metadata 
(automatically & explicitly)
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Different (overlapping) classes of  FS:

- “traditional”: hierarchy of  on-disk data

- database-backed storage (rich metadata)

- distributed storage (e.g., for MapReduce)

- namespace for everything (e.g. Plan 9)
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We’ll limit most of  our discussion to 
traditional filesystems and regular files

† modern FS implementations are almost 
all hybrids (of  the classes mentioned)
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- FS goals & requirements

- FS API

- FS implementation

- FS robustness

- Case study: xv6 (Unix)

Agenda
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system call interface (API)

OS-FS interface

FS implementation 

FS-device interface

device drivers

devices (HDDs, SSDs)

(reality is not so tidy!)
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§FS Goals
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I. File CRUD API:

- Create
- Read
- Update
- Delete
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II. Protection & Security

- access control

- ownership & permissions

- encryption
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III. Robustness

- crashes shouldn’t affect FS validity

- also try to mitigate data loss 
(e.g., uncommitted changes)
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IV. Flexibility & Scaleability

- different ways of  accessing data

- e.g., stream vs. memory mapped

- support exponential growth in drive capacity
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V. Decoupling of  OS & FS

- FS not tied to OS (or vice versa)

- multiple FSes a single OS (at once)
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VI. Device agnosticism

- FS shouldn’t assume/optimize for a 
certain type of  storage device

- e.g., HDD vs. SSD vs. RAM disk
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VII. Good throughput & responsiveness

- throughput (in MB/s or IOPS)

- responsiveness ≈ request latency
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VIII. Good disk utilization

- often least important!

- usually preferable to trade spatial 
inefficiency for robustness & speed
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§FS API
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File attributes (file as an ADT):
- name/path (convenient for humans)
- identifier (unique, system-wide)
- type (e.g., executable)
- protection & access control
- creator/owner, size, timestamp
- possibly much more! (e.g., log, tags, …)
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Basic operations:

- Create @ some location, with specified 
mode(s), possibly truncating

- Read

- Update: write content, metadata; adjust 
position in file (need to track)

- Delete = remove from FS
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Typical data structures:

- file descriptor

- open file structure

- namespace structure (e.g., directory)

- access control metadata
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a) file descriptor

- process-held “pointer” to an open file

- used to identify file to OS/FS for user 
initiated file operations

- enables OS encapsulation of  file data

21



Computer 
ScienceScience

b) open file structure

- essentials: position in file & count of  
referring processes (via FDs)

- may permit multiple positions

- flush in-memory struct if  count = 0

- also, per open-file access mode(s)
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c) namespace structure (e.g., directory)

- tracks position of  data “in” FS

- may function as all-purpose OS namespace 
(e.g., even for off-disk data)

- e.g., full path from FS “root”: 

 /home/lee/.emacs
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d) access-control metadata

- e.g., “rwx” bits in Unix

- separate bits for owner/group/all

- or more granular ACLs

- e.g., read/write/append/readacl/
writeacl/delete/etc., based on user
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 int open ( char *path, int oflag, ... );
 int creat ( char *path, mode_t mode );
 int close ( int fd );

 int link ( char *oldpath, char *newpath );
 int unlink ( char *path );
 int chdir ( char *dirpath );

 ssize_t read ( int fd, void *buf, size_t nbytes );
 ssize_t write ( int fd, void *buf, size_t nbytes );
 off_t lseek ( int fd, off_t offset, int whence );

 int fchmod ( int fd, mode_t mode );
 int fstat ( int fd, struct stat *buf );

e.g., Unix file syscalls
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struct stat {
    dev_t     st_dev;     /* ID of device containing file */
    ino_t     st_ino;     /* inode number */
    mode_t    st_mode;    /* protection */
    nlink_t   st_nlink;   /* number of hard links */
    uid_t     st_uid;     /* user ID of owner */
    gid_t     st_gid;     /* group ID of owner */
    dev_t     st_rdev;    /* device ID (if special file) */
    off_t     st_size;    /* total size, in bytes */
    blksize_t st_blksize; /* blocksize for file system I/O */
    blkcnt_t  st_blocks;  /* number of 512B blocks allocated */
    time_t    st_atime;   /* time of last access */
    time_t    st_mtime;   /* time of last modification */
    time_t    st_ctime;   /* time of last status change */
};
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Unix convention of  mapping fixed file 
descriptor values to “standard” in/out is 
widely copied — allows for I/O redirection
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int main(int argc, char *argv[]) {
    int fd = open("foo.txt", O_CREAT|O_TRUNC|O_RDWR, 0644);
    dup2(fd, 1); /* set fd 1 (stdout) to be “foo.txt” */
    printf("Arg: %s\n", argv[1]);
}
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0

1

2

3

4
OFD empty file

(by default: terminal)
⎫
⎬
⎭

int main(int argc, char *argv[]) {
    int fd = open("foo.txt", O_CREAT|O_TRUNC|O_RDWR, 0644);
    dup2(fd, 1); /* set fd 1 (stdout) to be “foo.txt” */
    printf("Arg: %s\n", argv[1]);
}

file descriptors (process-local)
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0

1

2

3

4
OFD

(output)

int main(int argc, char *argv[]) {
    int fd = open("foo.txt", O_CREAT|O_TRUNC|O_RDWR, 0644);
    dup2(fd, 1); /* set fd 1 (stdout) to be “foo.txt” */
    printf("Arg: %s\n", argv[1]); /* printf uses “stdout” */
}

empty file
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int main(int argc, char *argv[]) {
    int fd = open("foo.txt", O_CREAT|O_TRUNC|O_RDWR, 0644);
    dup2(fd, 1); /* set fd 1 (stdout) to be “foo.txt” */
    printf("Arg: %s\n", argv[1]);
}

$ ./a.out hello!
$
-rw-r--r-- 1 lee staff 12 Feb 19 20:36 foo.txt
$ cat foo.txt
Arg: hello!

ls -l foo.txt
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$ ./a.out 
$
hello!

int main() {
    int fd = open("foo.txt", O_CREAT|O_TRUNC|O_RDWR, 0644);
    if (fork() == 0) {
        dup2(fd, 1);
        execlp("echo", "echo", "hello!", NULL);
    }
    close(fd);
}

cat foo.txt 
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§FS Implementation
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1. Mass storage (disk) systems

2. Volumes and Partitions

3. Names and Paths

4. File space allocation

5. Free space tracking
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¶ Mass storage systems
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magnetic disks (HDDs) provide bulk of  
secondary storage

- rotating magnetic platters
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motor & belt driven
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smaller & denser, but 
still mechanical
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?!
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will focus on traditional HDDs for now …

- still a valuable discussion

- HDDs will remain the mass storage 
device of  choice for some time to come
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idealized addressing: Cylinder, Head, Sector
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a sector, historically, maps to a fixed 
512-byte block of  disk space

- minimum disk transfer size

- recently, drives are moving to 4K block 
sizes (but still support old mapping)

42



Computer 
ScienceScience

Disk access times = S + R + T

- S: seek time (head movement)

- R: rotational latency (depends on angular 
velocity — usually constant for HDDs)

- T: transfer time (relatively small)

+ “spin-up” time (discount for long I/O)
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Disk access times = S + R + T

- S: move to correct cylinder

- R: wait for sector to rotate under head

- T: move head across adjacent blocks
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Some numbers:

- seek time = 3ms-15ms

- typical RPM = 7200 (range of  5.4-15K)

- rot. latency = ½ of  period

- e.g., ½ × 60/7200 ≈ 4.17ms

45



WD Caviar Black
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Specifications1 2 TB 2 TB 1.5 TB 1.5 TB 1 TB 1 TB
Model number WD2002FAEX WD2001FASS WD1502FAEX WD1501FASS WD1002FAEX WD1001FALS
Interface SATA 6 Gb/s SATA 3 Gb/s SATA 6 Gb/s SATA 3 Gb/s SATA 6 Gb/s SATA 3 Gb/s
Formatted capacity 2,000,398 MB 2,000,398 MB 1,500,301 MB 1,500,301 MB 1,000,204 MB 1,000,204 MB
User sectors per drive 3,907,029,168 3,907,029,168 2,930,277,168 2,930,277,168 1,953,525,169 1,953,525,169
SATA latching connector Yes Yes Yes Yes Yes Yes
Form factor 3.5-inch 3.5-inch 3.5-inch 3.5-inch 3.5-inch 3.5-inch
RoHS compliant2 Yes Yes Yes Yes Yes Yes
Performance
Data transfer rate (max)

Buffer to host
Host to/from drive (sustained)

6 Gb/s
138 MB/s

3 Gb/s
138 MB/s

6 Gb/s
138 MB/s

3 Gb/s
138 MB/s

6 Gb/s
126 MB/s

3 Gb/s
126 MB/s

Cache (MB) 64 64 64 64 64 32
Average latency (ms) 4.2 4.2 4.2 4.2 4.2 4.2
Rotational speed (RPM) 7200 7200 7200 7200 7200 7200
Average drive ready time (sec) 21 21 21 21 11 11
Reliability/Data Integrity
Load/unload cycles3 300,000 300,000 300,000 300,000 300,000 300,000
Non-recoverable read errors per 
bits read

<1 in 1014 <1 in 1014 <1 in 1014 <1 in 1014 <1 in 1014 <1 in 1014 

Limited warranty (years)4 5 5 5 5 5 5
Power Management
Average power requirements (W)

Read/Write 
Idle
Standby
Sleep

10.7
8.2
1.3
1.3

10.7
8.2
1.3
1.3

10.7
8.2
1.3
1.3

10.7
8.2
1.3
1.3

6.8
6.1
0.7
0.7

6.8
6.1
0.7
0.7

Environmental Specifications5

Temperature (°C)
Operating
Non-operating

0 to 60
-40 to 70

0 to 60
-40 to 70

0 to 60
-40 to 70

0 to 60
-40 to 70

0 to 60
-40 to 70

0 to 60
-40 to 70

Shock (Gs)
Operating (2 ms, read)
Operating (2 ms, read/write)
Non-operating (2 ms)

30
65
300

30
65
300

30
65
300

30
65
300

30
65
300

30
65
300

Average acoustics (dBA)6

Idle mode
Performance seek mode
Quiet seek mode

29
34
30

29
34
30

29
34
30

29
34
30

28
33
29

28
33
29

Physical Dimensions
Height (in./mm, max) 1.028/25.4 1.028/25.4 1.028/25.4 1.028/25.4 1.028/25.4 1.028/25.4
Length (in./mm, max) 5.787/147 5.787/147 5.787/147 5.787/147 5.787/147 5.787/147
Width (in./mm, ± .01 in.) 4/101.6 4/101.6 4/101.6 4/101.6 4/101.6 4/101.6
Weight (lb./kg, ± 10%) 1.66/0.75 1.66/0.75 1.66/0.75 1.66/0.75 1.52/0.69 1.52/0.69

1As used for storage capacity, one megabyte (MB) = one million bytes, one gigabyte (GB) = one billion bytes, and one terabyte (TB) = one trillion bytes. Total accessible capacity varies depending on operating environment. As used for buffer or cache, one megabyte (MB) = 1,048,576 
bytes. As used for transfer rate or interface, megabyte per second (MB/s) = one million bytes per second, and gigabit per second (Gb/s) = one billion bits per second. Effective maximum SATA 3 Gb/s and SATA 6 Gb/s transfer rates calculated according to the Serial ATA specification 
published by the SATA-IO organization as of the date of this specification sheet. Visit www.sata-io.org for details.

2WD hard drive products manufactured and sold worldwide after June 1, 2006, meet or exceed Restriction of Hazardous Substances (RoHS) compliance requirements as mandated by the European Union for electrical and electronic products. The RoHS Directive 2002/95/EC of the 
European Parliament, which is effective in the EU beginning July 1, 2006, aims to protect human health and the environment by restricting the use of certain hazardous substances in new equipment, and consists of restrictions on lead, mercury, cadmium, and other substances.

3Controlled unload at ambient condition
4The term of the limited warranty may vary by region. Visit http://support.wdc.com/warranty for details.
5No non-recoverable errors during operating tests or after non-operating tests.
6Sound power level.
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by contrast, each channel of  DDR3-2133 
memory has max theoretical throughput:


 2133 MHz × 8 bytes = 17064 MB/s

… only ~100× more than disk throughput?
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138 MB/s is sustained rate

- unlikely when dealing with random, 
fragmented data on disk

- 6 Gb/s (750MB/s) is buffer to memory 
— not indicative of  HDD speed
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HDDs are best leveraged by reading 
contiguous sectors — i.e., w/o seeking
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idea: optimize order of  block requests to 
minimize seeks (most expensive operation)

goals:

- maximize throughput

- minimize latency per response
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province of  disk head scheduler
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CHS is useful for discussion:

- bigger difference in cylinders = larger 
head movement

- note: heads move as single unit
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But CHS is unrealistic in modern drives:

low density in outer cylinders!
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Modern drives use logical block addressing (LBA)

- number blocks starting from 0 (innermost) 
to outermost, then back in on reverse side

- problem: no disk geometry info!

- not so bad: LBAi, LBAi+1 are at most 
1 cylinder apart
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Disk head scheduling problem:

- given requests B1, B2, … from 
processes, what seek order to send to 
disk controller?
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Analogs to scheduling approaches:

- First come, first served (FCFS)

- Shortest Seek Time First (SSTF)

- Nearest Block Number First (NBNF)
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as before, SSTF can result in starvation — 
or at best poor request latency!
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how to alleviate starvation problem, and 
optimize wait time, responsiveness, etc.?
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“Elevator” Algorithms
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SCAN:

- track from spindle ↔ edge of  disk
- only service requests in the current 
direction of  travel

- keep heading towards spindle/edge 
even if  no requests in that direction
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Variants of  SCAN:

- C-SCAN: “circular” tracking

- F-SCAN: “freeze” request queue on 
direction change
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LOOK:

- reverse direction when no more requests

- variants: C-LOOK, F-LOOK
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Demo: UTSA disk-head simulator
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… but FSes may span more than just one 
storage device!
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¶ Volumes and Partitions
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Why volumes & partitions?

- separate logical & physical storage layers

- allow M:N mapping between FSes & disks
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A volume is a logical storage area.

A partition is a slice of  a physical disk.

- a disk may have zero or more partitions

- a partition may contain a volume

- a volume may span one or more partitions

- a volume may exist independently of  a partition 
(e.g., ISO/DMG files)
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courtesy Wikimedia Commons
GUID partition table scheme
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(typically) partition ≤ volume ≤ FS

- inter-partition / inter-volume FS 
operations are more expensive!

- separate metadata structures

- separate caches
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¶ Names and Paths
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Requirement: a fully qualified filename 
uniquely identifies a set of  data blocks on disk

- big filenames & "flat" namespace work, 
but are hard to reason about

- prefer hierarchical namespaces

- fully qualified filename = name + path
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/home/lee/cs450/slides/fs.pdf

- absolute path

- from “/home/lee/cs450”, 
relative path is “./slides/fs.pdf”

- (“.” = current directory)
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- one or more root namespaces

- typically can mount additional 
filesystems onto global namespace

- support for multiple filesystems
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e.g., Windows:

- C:\foo.txt vs. D:\foo.txt

e.g., Unix

- /home/lee/foo.txt 
vs. /mnt/cdrom/foo.txt
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What's in a name?

- path → file must be unique

- file → path??

- consider aliases/shortcuts:

- /bin/prog ↔ /home/lee/foo_prog

- different paths may refer to same file
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Directories provide linking structures

- directory maps name → file identifier

- file id is implementation specific

- directories are also files (recursive def)
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Link types:

- hard link: different names (possibly in 
different directories) map to same file

- remove all hard links = removing file

- soft/symbolic link: file containing the 
name of  another file

- independent of  whether file exists
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note: soft links are possible across partitions/
volumes, but hard links aren’t (usually)
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To “find” a file:

- just need location of  root directory

- search recursively for path components

- trickier with multiple FSes

- each logical volume of  data contains its 
own high level metadata
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¶ File space allocation
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mapping problem: for a given file (by path 
or id), find (ordered) list of  data blocks
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considerations:

- good disk utilization

- efficiency (w.r.t. HDD seeks)

- random access

- scaleability
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basic strategies:

- contiguous

- linked (decentralized)

- centralized

- linked

- indexed
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11.16 Silberschatz, Galvin and Gagne ©2009Operating System Concepts  with Java – 8th Edition

Contiguous Allocation of Disk Space

contiguous allocation

directory may double
as metadata store, too
(e.g., mode, owner)
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pros:

- ideal for sequential HDD reads; reduce 
seeks → fast!

- random access is trivial

cons:

- clear disadvantage: fragmentation

- affects utilization, placement (“all or 
nothing”), resizing
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not used on its own, but contiguous extents 
are used in most modern file systems

- multiple of  block size — variable size

- reserve in advance during allocation

- balance fragmentation & efficiency
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11.20 Silberschatz, Galvin and Gagne ©2009Operating System Concepts  with Java – 8th Edition

Linked Allocation

linked allocation (decentralized)

block metadata

block data
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pros:

- good utilization + allows resizing

cons:

- fragmentation → lot of  seeks = slow!

- no random access

- hard to protect file metadata!
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11.21 Silberschatz, Galvin and Gagne ©2009Operating System Concepts  with Java – 8th Edition

File-Allocation Table

linked allocation (centralized)

stored as
per-volume 
metadata!
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pros:

- allows for random access

- used with extents, can limit fragmentation

disadvantages:

- centralized file metadata (robustness?)

- overhead incurred by central FAT

- hard limit on volume size!
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also, unless directories maintain metadata, 
central structure has very limited space

e.g., where to put mode, ownership, ACL, 
timestamp, etc.?
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e.g., MS-DOS file-allocation table (FAT)

- FAT12, FAT16, FAT32 variants (based 
on sizes of  FAT entry)
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some MS FAT terminology:

“sector”: physical disk block (512 bytes)

“cluster”: fixed-size extent of  1-256 sectors

	 (512 bytes - 128KB)
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some limits:

FAT12: 4K clusters x 512 = 2MB

FAT16: 64K clusters x 8K = 512MB

FAT32: only 28-bits of  FAT entry useable,

	 268M clusters x 8K = 2TB
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FAT12 requirements : 3 sectors on each copy of FAT for every 1,024 clusters
FAT16 requirements : 1 sector on each copy of FAT for every 256 clusters
FAT32 requirements : 1 sector on each copy of FAT for every 128 clusters

FAT12 range : 1 to 4,084 clusters : 1 to 12 sectors per copy of FAT
FAT16 range : 4,085 to 65,524 clusters : 16 to 256 sectors per copy of FAT
FAT32 range : 65,525 to 268,435,444 clusters : 512 to 2,097,152 sectors per copy of FAT

FAT12 minimum : 1 sector per cluster × 1 clusters = 512 bytes (0.5 KiB)
FAT16 minimum : 1 sector per cluster × 4,085 clusters = 2,091,520 bytes (2,042.5 KiB)
FAT32 minimum : 1 sector per cluster × 65,525 clusters = 33,548,800 bytes (32,762.5 KiB)

FAT12 maximum : 64 sectors per cluster × 4,084 clusters = 133,824,512 bytes (≈ 127 MiB)
[FAT12 maximum : 128 sectors per cluster × 4,084 clusters = 267,694,024 bytes (≈ 255 MiB)]

FAT16 maximum : 64 sectors per cluster × 65,524 clusters = 2,147,090,432 bytes (≈2,047 MiB)
[FAT16 maximum : 128 sectors per cluster × 65,524 clusters = 4,294,180,864 bytes (≈4,095 MiB)]

FAT32 maximum : 8 sectors per cluster × 268,435,444 clusters = 1,099,511,578,624 bytes (≈1,024 GiB)
FAT32 maximum : 16 sectors per cluster × 268,173,557 clusters = 2,196,877,778,944 bytes (≈2,046 GiB)
[FAT32 maximum : 32 sectors per cluster × 134,152,181 clusters = 2,197,949,333,504 bytes (≈2,047 GiB)]
[FAT32 maximum : 64 sectors per cluster × 67,092,469 clusters = 2,198,486,024,192 bytes (≈2,047 GiB)]
[FAT32 maximum : 128 sectors per cluster × 33,550,325 clusters = 2,198,754,099,200 bytes (≈2,047 GiB)]

source: https://en.wikipedia.org/wiki/File_Allocation_Table
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file size limit theoretically = disk limit,

but directory implementation constrains 
file sizes to 4GB in FAT32
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11.23 Silberschatz, Galvin and Gagne ©2009Operating System Concepts  with Java – 8th Edition

Example of Indexed Allocation

indexed allocation 
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files identified by index block number

- a.k.a. inode number

- directory is an inode “registry”

- index of  file name → inode #

- each entry is a hard link

- directories are files, too, so they also 
have inodes
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pros:

- allows for random access

- natural metadata store

- used with extents, can limit fragmentation

disadvantages:

- overhead incurred by index nodes

- limit on file size (# block references)
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e.g., Unix File System, UFS (and all its 
	 descendants)
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“super” 
block

inodes

data blocks
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superblock contains FS metadata

- size of  logical blocks

- location & number of  inodes

inodes section contains per-file metadata

- # inodes = max # files
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file metadata
(e.g., type, ownership, 
access time, # links)

direct pointers

single indirect pointer

double indirect pointer

triple indirect pointer

data block

data block

direct 
pointers

data block

data block

single indirect 
pointers

direct 
pointers

direct 
pointers

data block

data block

“inode” block

note: indirect blocks are
stored in data area of  volume!

103



Computer 
ScienceScience

e.g., UFS properties:

- max disk / file size?

- 32-bit i-node pointers

- 4KB i-node/data blocks

- 8 direct, 2 single indirect, 1 double 
indirect pointer per i-node
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max disk size = 4G x 4KB = 16TB

- 32-bit i-node pointers

- 4KB i-node/data blocks

- 8 direct, 2 single indirect, 1 double 
indirect pointer per i-node
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directly addressed: 8 x 4KB = 32KB

- 32-bit i-node pointers

- 4KB i-node/data blocks

- 8 direct, 2 single indirect, 1 double 
indirect pointer per i-node
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each indirect block can hold 4KB / 4 bytes 

= 1K pointers

- 32-bit i-node pointers

- 4KB i-node/data blocks

- 8 direct, 2 single indirect, 1 double 
indirect pointer per i-node
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single indirect pointer = 1K x 4KB = 4MB

two single indirect = 8MB

- 32-bit i-node pointers

- 4KB i-node/data blocks

- 8 direct, 2 single indirect, 1 double 
indirect pointer per i-node
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double indirect pointer = 1K x 1K x 4KB 

= 4GB

- 32-bit i-node pointers

- 4KB i-node/data blocks

- 8 direct, 2 single indirect, 1 double 
indirect pointer per i-node
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max file size = 32KB + 8MB + 4GB

† variable # block requests per data request 
(depending on location in file!)

- 32-bit i-node pointers

- 4KB i-node/data blocks

- 8 direct, 2 single indirect, 1 double 
indirect pointer per i-node
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how to keep FS decoupled from OS?
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need a middle layer — a mediator between 
FS specific constructs & abstract OS file-
related operations
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VFS: “Virtual File System” layer

- Unix centric API between syscall API 
(open/close/read/write) & FSes

- every FS must implement generic 
analogues of: inode, file, superblock, dentry

113



Computer 
ScienceScience

each FS object has a table of  function 
pointers (e.g., open/close/read/write) that 
are used by VFS to map syscalls
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¶ Free space tracking
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1. linked free blocks

2. free space bitmap

3. general disk-based data structures
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1. linked free blocks

- no overhead

- but expensive to traverse!

- can optimize as a skip list

- useful for extent search

11.33 Silberschatz, Galvin and Gagne ©2009Operating System Concepts  with Java – 8th Edition

Linked Free Space List on Disk

free list
head
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bit[i] =


 0 ⇒ block[i] occupied

1  ⇒ block[i] free

0 1 2 ... n-1

- simple to maintain & fast!
- use machine instr. to locate first ‘1’

2. free space bitmap
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- block size = 212 bytes (4KB)

- disk size = 1TB = 240 bytes

- free space bitmap = 228 bits (32MB)

- small enough to keep in memory

- but beware synch issues
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optimization:

- break bitmap into subsets & build 
index of  # free blocks → subset

- speed up extent search

- can lock subsets separately
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3. general disk-based data structures

e.g., B+ tree

balanced search tree with very large
branching factor (# pointers per block)

— worth it?
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§FS Robustness
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we like to think of  the FS (unfortunately) 
as the “rock” of  the OS

— when things go wrong (e.g., BSoD/
panic), hard restart and count on persisted 
data to save us
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i.e., FS can’t count on OS to play nice!

e.g., unannounced crashes, incomplete 
operations, unflushed buffers, etc.
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cannot ensure durability of  in-memory 
data, but want to preserve validity of  the 
file system when possible

e.g., file metadata is accurate, persisted 
data is not corrupted, etc.
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Q: what might happen when a crash occurs?
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important: differentiate between in-memory 
(cached) and on-disk (persistent) structures

note: FS aggressively caches data!
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e.g., disk block allocation

1. update free bitmap

2. update inode
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1. update cached free bitmap
2. update vnode
3. write back inode
4. write back disk bitmap

crash
(durability problem)
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user responsibility; e.g., Unix fsync syscall
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1. update cached free bitmap
2. update vnode
3. 
4. 

crash
(“free” space in use!)

write back inode
write back disk bitmap
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crash
(lost space)

write back disk bitmap
write back inode

1. update cached free bitmap
2. update vnode
3. 
4. 
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e.g., file deletion (# links = 0)
1. 
2. 

free inode & data blocks
remove directory link

crash
(“free” space in use!)
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free inode & data blocks
remove directory link

e.g., file deletion (# links = 0)
1. 
2. 

crash
(“orphaned” inodes)
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imminent data corruption vs. storage “leak”

(lesser of  two evils)
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soft updates: order software updates so that, 
in worst case, we only ever leak free space

— generally speaking, update 
free-space structures last
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leaked space isn’t permanent!

can perform manual consistency check of  FS
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e.g., UFS

- manually walk through all i-nodes and 
directory structures

- allocated i-nodes with 0 links can be 
reused

- allocated blocks with no referencing i-
nodes can be “garbage collected”
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the notorious “fsck” can report:

- Unreferenced inodes

- Link counts in inodes too large

- Missing blocks in the free map

- Blocks in the free map also in files

- Counts in the super-block wrong
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BUT!

soft updates isn’t trivial to implement, and 
may also conflict with caching needs

no good! FS is already messy to begin with!
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another approach to FS robustness:

journaling / logging
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a. say what you’re about to do
b. do it
c. say that you did it
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a. record what you’re about to do
b. indicate that you finished (a)
c. do it
d. record that you did it
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a. record FS update in journal entry
b. ensure journal entry is persisted
c. perform FS update
d.commit/delete journal entry

crash

no journal entry on reboot;
no possible of FS inconsistency
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a. record FS update in journal entry
b. ensure journal entry is persisted
c. perform FS update
d.commit/delete journal entry

crash

on reboot, find partial journal entry;
no FS data corruption possible
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a. record FS update in journal entry
b. ensure journal entry is persisted
c. perform FS update
d.commit/delete journal entry

on reboot, journal shows incomplete FS update;
replay entry to ensure FS consistency

crash
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a. record FS update in journal entry
b. ensure journal entry is persisted
c. perform FS update
d.commit/delete journal entry

crash
detect completed operation;

commit/delete entry
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journal enables FS transactions

crash → replay journal; 

 
 
    skip incomplete entries
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drawback?

huge overhead — “write-twice” penalty

† cannot delay persisting journal entries
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ease overhead: physical vs. semantic journals

physical = record block-level data in journal

semantic = record logical intent when possible

150



Computer 
ScienceScience

also, ensuring FS consistency arguably more 
important than short-term data loss 

complete vs. metadata-only journal
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Q: is there a way to eliminate the write-
twice penalty and still get transactional 
behavior?
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hint: think back to persistent data 
structures used to implement MVCC
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“there is no spoon”

(the file system is the journal)
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log-structured FS: all FS updates are 
persisted to the end of  the journal

- file updates are effectively copy-on-write

- current FS state = log replay
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for efficiency, periodically:

- garbage collect unreachable blocks, 
deleted files, etc., from log

- write FS checkpoints to avoid full 
replay
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interesting benefit of  LFS: most writes are 
sequential (but reads are scattered 
throughout the log)
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nifty idea, but horrible fragmentation!

impractical with HDDs, but what about SSDs?

- robustness w/o write-twice penalty. 
Hmmmmmmmm.
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interesting: SSDs already kind of  do LFS 
with TRIM wear leveling — writes occur 
elsewhere on disk from “replaced” block

- long term performance of  SSDs has 
similar pattern to LFSes

- SSDs are also fast-to-read, slower-to-
write
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So updates, journaling, and LFSes 
= soware based solutions

160



hard drive crash? #$%&#$#!!!!
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§Hardware level 
robustness
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mean time to failure
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1,000,000+ hours!
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“crap”
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raw numbers, are likely to be good indicators of some-
thing really bad with the drive. Filtering for spurious
values reduced the sample set size by less than 0.1%.

3 Results

We now analyze the failure behavior of our fleet of disk
drives using detailed monitoring data collected over a
nine-month observation window. During this time we
recorded failure events as well as all the available en-
vironmental and activity data and most of the SMART
parameters from the drives themselves. Failure informa-
tion spanning a much longer interval (approximately five
years) was also mined from an older repairs database.
All the results presented here were tested for their statis-
tical significance using the appropriate tests.

3.1 Baseline Failure Rates

Figure 2 presents the average Annualized Failure Rates
(AFR) for all drives in our study, aged zero to 5 years,
and is derived from our older repairs database. The data
are broken down by the age a drive was when it failed.
Note that this implies some overlap between the sample
sets for the 3-month, 6-month, and 1-year ages, because
a drive can reach its 3-month, 6-month and 1-year age
all within the observation period. Beyond 1-year there is
no more overlap.
While it may be tempting to read this graph as strictly

failure rate with drive age, drive model factors are
strongly mixed into these data as well. We tend to source
a particular drive model only for a limited time (as new,
more cost-effective models are constantly being intro-
duced), so it is often the case that when we look at sets
of drives of different ages we are also looking at a very
different mix of models. Consequently, these data are
not directly useful in understanding the effects of disk
age on failure rates (the exception being the first three
data points, which are dominated by a relatively stable
mix of disk drive models). The graph is nevertheless a
good way to provide a baseline characterization of fail-
ures across our population. It is also useful for later
studies in the paper, where we can judge how consistent
the impact of a given parameter is across these diverse
drive model groups. A consistent and noticeable impact
across all groups indicates strongly that the signal being
measured has a fundamentally powerful correlation with
failures, given that it is observed across widely varying
ages and models.
The observed range of AFRs (see Figure 2) varies

from 1.7%, for drives that were in their first year of op-
eration, to over 8.6%, observed in the 3-year old pop-

Figure 2: Annualized failure rates broken down by age groups

ulation. The higher baseline AFR for 3 and 4 year old
drives is more strongly influenced by the underlying re-
liability of the particular models in that vintage than by
disk drive aging effects. It is interesting to note that our
3-month, 6-months and 1-year data points do seem to
indicate a noticeable influence of infant mortality phe-
nomena, with 1-year AFR dropping significantly from
the AFR observed in the first three months.

3.2 Manufacturers, Models, and Vintages

Failure rates are known to be highly correlated with drive
models, manufacturers and vintages [18]. Our results do
not contradict this fact. For example, Figure 2 changes
significantly when we normalize failure rates per each
drive model. Most age-related results are impacted by
drive vintages. However, in this paper, we do not show a
breakdown of drives per manufacturer, model, or vintage
due to the proprietary nature of these data.
Interestingly, this does not change our conclusions. In

contrast to age-related results, we note that all results
shown in the rest of the paper are not affected signifi-
cantly by the population mix. None of our SMART data
results change significantly when normalized by drive
model. The only exception is seek error rate, which is
dependent on one specific drive manufacturer, as we dis-
cuss in section 3.5.5.

3.3 Utilization

The literature generally refers to utilization metrics by
employing the term duty cycle which unfortunately has
no consistent and precise definition, but can be roughly
characterized as the fraction of time a drive is active out
of the total powered-on time. What is widely reported in
the literature is that higher duty cycles affect disk drives
negatively [4, 21].

Failure Trends in a Large Disk Drive Population (Google, FAST ‘07)
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hard drive failure:

question of  when, not if!
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redundancy
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preventing downtime

preventing data loss
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Redundant Array of  Independent Disks
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data robustness
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secondary objectives:

- increased capacity

- improved performance
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RAID array = one logical disk
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transparent to OS/FS (ideally)
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software vs. hardware RAID
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RAID “levels”
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combination of  techniques

1. mirroring

2. striping

3. parity
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Data bits Odd Parity Even Parity

0101010 00101010 10101010

0000011 10000011 00000011
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Diagram courtesy Wikipedia
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//  x  =  A,  y  =  B
x  =  x  ^  y  ;  //  x  =  A^B
y  =  x  ^  y  ;  //  y  =  A^B^B  =  A
x  =  x  ^  y  ;  //  x  =  A^B^A  =  B

B1 ⊕ B2 ⊕ … ⊕ BN-1 ⊕ BN ⇒ BP

B1 ⊕ B2 ⊕ … ⊕ BN-1 ⊕ BP ⇒ BN
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figures courtesy Wikimedia Commons
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Update: A1 ⊕ A2 ⊕ A3 ⊕ A3 ⊕ A3ʹ′ ⇒ APʹ′

bottleneck!
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write penalty
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battle against any raid five

http://www.baarf.com/

190



Computer 
ScienceScience

data & parity updates separate
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failure in between?
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write hole
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caching / 

non-volatile storage
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vs. RAID 10
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§Case study: xv6 (Unix)
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