
File Systems
CS 450 : Operating Systems
Michael Saelee <lee@iit.edu>

1

Computer
ScienceScience

What is a file?

- some logical collection of data

- format/interpretation is (typically) of
little concern to OS

2

Computer
ScienceScience

A filesystem is a collection of files

- supports a managed namespace of data

- maps & manages file metadata
(automatically & explicitly)

3

Computer
ScienceScience

Different (overlapping) classes of FS:

- “traditional”: hierarchy of on-disk data

- database-backed storage (rich metadata)

- distributed storage (e.g., for MapReduce)

- namespace for everything (e.g. Plan 9)

4

Computer
ScienceScience

We’ll limit most of our discussion to
traditional filesystems and regular files

† modern FS implementations are almost
all hybrids (of the classes mentioned)

5

Computer
ScienceScience

- FS goals & requirements

- FS API

- FS implementation

- FS robustness

- Case study: xv6 (Unix)

Agenda

6

Computer
ScienceScience

system call interface (API)

OS-FS interface

FS implementation

FS-device interface

device drivers

devices (HDDs, SSDs)

(reality is not so tidy!)

7

Computer
ScienceScience

§FS Goals

8

Computer
ScienceScience

I. File CRUD API:

- Create
- Read
- Update
- Delete

9

Computer
ScienceScience

II. Protection & Security

- access control

- ownership & permissions

- encryption

10

Computer
ScienceScience

III. Robustness

- crashes shouldn’t affect FS validity

- also try to mitigate data loss
(e.g., uncommitted changes)

11

Computer
ScienceScience

IV. Flexibility & Scaleability

- different ways of accessing data

- e.g., stream vs. memory mapped

- support exponential growth in drive capacity

12

Computer
ScienceScience

V. Decoupling of OS & FS

- FS not tied to OS (or vice versa)

- multiple FSes a single OS (at once)

13

Computer
ScienceScience

VI. Device agnosticism

- FS shouldn’t assume/optimize for a
certain type of storage device

- e.g., HDD vs. SSD vs. RAM disk

14

Computer
ScienceScience

VII. Good throughput & responsiveness

- throughput (in MB/s or IOPS)

- responsiveness ≈ request latency

15

Computer
ScienceScience

VIII. Good disk utilization

- often least important!

- usually preferable to trade spatial
inefficiency for robustness & speed

16

Computer
ScienceScience

§FS API

17

Computer
ScienceScience

File attributes (file as an ADT):
- name/path (convenient for humans)
- identifier (unique, system-wide)
- type (e.g., executable)
- protection & access control
- creator/owner, size, timestamp
- possibly much more! (e.g., log, tags, …)

18

Computer
ScienceScience

Basic operations:

- Create @ some location, with specified
mode(s), possibly truncating

- Read

- Update: write content, metadata; adjust
position in file (need to track)

- Delete = remove from FS

19

Computer
ScienceScience

Typical data structures:

- file descriptor

- open file structure

- namespace structure (e.g., directory)

- access control metadata

20

Computer
ScienceScience

a) file descriptor

- process-held “pointer” to an open file

- used to identify file to OS/FS for user
initiated file operations

- enables OS encapsulation of file data

21

Computer
ScienceScience

b) open file structure

- essentials: position in file & count of
referring processes (via FDs)

- may permit multiple positions

- flush in-memory struct if count = 0

- also, per open-file access mode(s)

22

Computer
ScienceScience

c) namespace structure (e.g., directory)

- tracks position of data “in” FS

- may function as all-purpose OS namespace
(e.g., even for off-disk data)

- e.g., full path from FS “root”:

 /home/lee/.emacs

23

Computer
ScienceScience

d) access-control metadata

- e.g., “rwx” bits in Unix

- separate bits for owner/group/all

- or more granular ACLs

- e.g., read/write/append/readacl/
writeacl/delete/etc., based on user

24

Computer
ScienceScience

 int open (char *path, int oflag, ...);
 int creat (char *path, mode_t mode);
 int close (int fd);

 int link (char *oldpath, char *newpath);
 int unlink (char *path);
 int chdir (char *dirpath);

 ssize_t read (int fd, void *buf, size_t nbytes);
 ssize_t write (int fd, void *buf, size_t nbytes);
 off_t lseek (int fd, off_t offset, int whence);

 int fchmod (int fd, mode_t mode);
 int fstat (int fd, struct stat *buf);

e.g., Unix file syscalls

25

Computer
ScienceScience

struct stat {
 dev_t st_dev; /* ID of device containing file */
 ino_t st_ino; /* inode number */
 mode_t st_mode; /* protection */
 nlink_t st_nlink; /* number of hard links */
 uid_t st_uid; /* user ID of owner */
 gid_t st_gid; /* group ID of owner */
 dev_t st_rdev; /* device ID (if special file) */
 off_t st_size; /* total size, in bytes */
 blksize_t st_blksize; /* blocksize for file system I/O */
 blkcnt_t st_blocks; /* number of 512B blocks allocated */
 time_t st_atime; /* time of last access */
 time_t st_mtime; /* time of last modification */
 time_t st_ctime; /* time of last status change */
};

26

Computer
ScienceScience

Unix convention of mapping fixed file
descriptor values to “standard” in/out is
widely copied — allows for I/O redirection

27

Computer
ScienceScience

int main(int argc, char *argv[]) {
 int fd = open("foo.txt", O_CREAT|O_TRUNC|O_RDWR, 0644);
 dup2(fd, 1); /* set fd 1 (stdout) to be “foo.txt” */
 printf("Arg: %s\n", argv[1]);
}

28

Computer
ScienceScience

0

1

2

3

4
OFD empty file

(by default: terminal)
⎫
⎬
⎭

int main(int argc, char *argv[]) {
 int fd = open("foo.txt", O_CREAT|O_TRUNC|O_RDWR, 0644);
 dup2(fd, 1); /* set fd 1 (stdout) to be “foo.txt” */
 printf("Arg: %s\n", argv[1]);
}

file descriptors (process-local)

29

Computer
ScienceScience

0

1

2

3

4
OFD

(output)

int main(int argc, char *argv[]) {
 int fd = open("foo.txt", O_CREAT|O_TRUNC|O_RDWR, 0644);
 dup2(fd, 1); /* set fd 1 (stdout) to be “foo.txt” */
 printf("Arg: %s\n", argv[1]); /* printf uses “stdout” */
}

empty file

30

Computer
ScienceScience

int main(int argc, char *argv[]) {
 int fd = open("foo.txt", O_CREAT|O_TRUNC|O_RDWR, 0644);
 dup2(fd, 1); /* set fd 1 (stdout) to be “foo.txt” */
 printf("Arg: %s\n", argv[1]);
}

$./a.out hello!
$
-rw-r--r-- 1 lee staff 12 Feb 19 20:36 foo.txt
$ cat foo.txt
Arg: hello!

ls -l foo.txt

31

Computer
ScienceScience

$./a.out
$
hello!

int main() {
 int fd = open("foo.txt", O_CREAT|O_TRUNC|O_RDWR, 0644);
 if (fork() == 0) {
 dup2(fd, 1);
 execlp("echo", "echo", "hello!", NULL);
 }
 close(fd);
}

cat foo.txt

32

Computer
ScienceScience

§FS Implementation

33

Computer
ScienceScience

1. Mass storage (disk) systems

2. Volumes and Partitions

3. Names and Paths

4. File space allocation

5. Free space tracking

34

Computer
ScienceScience

¶ Mass storage systems

35

Computer
ScienceScience

magnetic disks (HDDs) provide bulk of
secondary storage

- rotating magnetic platters

36

Computer
ScienceScience

motor & belt driven

37

Computer
ScienceScience

smaller & denser, but
still mechanical

38

Computer
ScienceScience

?!

39

Computer
ScienceScience

will focus on traditional HDDs for now …

- still a valuable discussion

- HDDs will remain the mass storage
device of choice for some time to come

40

Computer
ScienceScience

idealized addressing: Cylinder, Head, Sector

41

Computer
ScienceScience

a sector, historically, maps to a fixed
512-byte block of disk space

- minimum disk transfer size

- recently, drives are moving to 4K block
sizes (but still support old mapping)

42

Computer
ScienceScience

Disk access times = S + R + T

- S: seek time (head movement)

- R: rotational latency (depends on angular
velocity — usually constant for HDDs)

- T: transfer time (relatively small)

+ “spin-up” time (discount for long I/O)

43

Computer
ScienceScience

Disk access times = S + R + T

- S: move to correct cylinder

- R: wait for sector to rotate under head

- T: move head across adjacent blocks

44

Computer
ScienceScience

Some numbers:

- seek time = 3ms-15ms

- typical RPM = 7200 (range of 5.4-15K)

- rot. latency = ½ of period

- e.g., ½ × 60/7200 ≈ 4.17ms

45

WD Caviar Black

-2-

Specifications1 2 TB 2 TB 1.5 TB 1.5 TB 1 TB 1 TB
Model number WD2002FAEX WD2001FASS WD1502FAEX WD1501FASS WD1002FAEX WD1001FALS
Interface SATA 6 Gb/s SATA 3 Gb/s SATA 6 Gb/s SATA 3 Gb/s SATA 6 Gb/s SATA 3 Gb/s
Formatted capacity 2,000,398 MB 2,000,398 MB 1,500,301 MB 1,500,301 MB 1,000,204 MB 1,000,204 MB
User sectors per drive 3,907,029,168 3,907,029,168 2,930,277,168 2,930,277,168 1,953,525,169 1,953,525,169
SATA latching connector Yes Yes Yes Yes Yes Yes
Form factor 3.5-inch 3.5-inch 3.5-inch 3.5-inch 3.5-inch 3.5-inch
RoHS compliant2 Yes Yes Yes Yes Yes Yes
Performance
Data transfer rate (max)

Buffer to host
Host to/from drive (sustained)

6 Gb/s
138 MB/s

3 Gb/s
138 MB/s

6 Gb/s
138 MB/s

3 Gb/s
138 MB/s

6 Gb/s
126 MB/s

3 Gb/s
126 MB/s

Cache (MB) 64 64 64 64 64 32
Average latency (ms) 4.2 4.2 4.2 4.2 4.2 4.2
Rotational speed (RPM) 7200 7200 7200 7200 7200 7200
Average drive ready time (sec) 21 21 21 21 11 11
Reliability/Data Integrity
Load/unload cycles3 300,000 300,000 300,000 300,000 300,000 300,000
Non-recoverable read errors per
bits read

<1 in 1014 <1 in 1014 <1 in 1014 <1 in 1014 <1 in 1014 <1 in 1014

Limited warranty (years)4 5 5 5 5 5 5
Power Management
Average power requirements (W)

Read/Write
Idle
Standby
Sleep

10.7
8.2
1.3
1.3

10.7
8.2
1.3
1.3

10.7
8.2
1.3
1.3

10.7
8.2
1.3
1.3

6.8
6.1
0.7
0.7

6.8
6.1
0.7
0.7

Environmental Specifications5

Temperature (°C)
Operating
Non-operating

0 to 60
-40 to 70

0 to 60
-40 to 70

0 to 60
-40 to 70

0 to 60
-40 to 70

0 to 60
-40 to 70

0 to 60
-40 to 70

Shock (Gs)
Operating (2 ms, read)
Operating (2 ms, read/write)
Non-operating (2 ms)

30
65
300

30
65
300

30
65
300

30
65
300

30
65
300

30
65
300

Average acoustics (dBA)6

Idle mode
Performance seek mode
Quiet seek mode

29
34
30

29
34
30

29
34
30

29
34
30

28
33
29

28
33
29

Physical Dimensions
Height (in./mm, max) 1.028/25.4 1.028/25.4 1.028/25.4 1.028/25.4 1.028/25.4 1.028/25.4
Length (in./mm, max) 5.787/147 5.787/147 5.787/147 5.787/147 5.787/147 5.787/147
Width (in./mm, ± .01 in.) 4/101.6 4/101.6 4/101.6 4/101.6 4/101.6 4/101.6
Weight (lb./kg, ± 10%) 1.66/0.75 1.66/0.75 1.66/0.75 1.66/0.75 1.52/0.69 1.52/0.69

1As used for storage capacity, one megabyte (MB) = one million bytes, one gigabyte (GB) = one billion bytes, and one terabyte (TB) = one trillion bytes. Total accessible capacity varies depending on operating environment. As used for buffer or cache, one megabyte (MB) = 1,048,576
bytes. As used for transfer rate or interface, megabyte per second (MB/s) = one million bytes per second, and gigabit per second (Gb/s) = one billion bits per second. Effective maximum SATA 3 Gb/s and SATA 6 Gb/s transfer rates calculated according to the Serial ATA specification
published by the SATA-IO organization as of the date of this specification sheet. Visit www.sata-io.org for details.

2WD hard drive products manufactured and sold worldwide after June 1, 2006, meet or exceed Restriction of Hazardous Substances (RoHS) compliance requirements as mandated by the European Union for electrical and electronic products. The RoHS Directive 2002/95/EC of the
European Parliament, which is effective in the EU beginning July 1, 2006, aims to protect human health and the environment by restricting the use of certain hazardous substances in new equipment, and consists of restrictions on lead, mercury, cadmium, and other substances.

3Controlled unload at ambient condition
4The term of the limited warranty may vary by region. Visit http://support.wdc.com/warranty for details.
5No non-recoverable errors during operating tests or after non-operating tests.
6Sound power level.

46

Computer
ScienceScience

by contrast, each channel of DDR3-2133
memory has max theoretical throughput:

 2133 MHz × 8 bytes = 17064 MB/s

… only ~100× more than disk throughput?

47

Computer
ScienceScience

138 MB/s is sustained rate

- unlikely when dealing with random,
fragmented data on disk

- 6 Gb/s (750MB/s) is buffer to memory
— not indicative of HDD speed

48

Computer
ScienceScience

HDDs are best leveraged by reading
contiguous sectors — i.e., w/o seeking

49

Computer
ScienceScience

idea: optimize order of block requests to
minimize seeks (most expensive operation)

goals:

- maximize throughput

- minimize latency per response

50

Computer
ScienceScience

province of disk head scheduler

51

Computer
ScienceScience

CHS is useful for discussion:

- bigger difference in cylinders = larger
head movement

- note: heads move as single unit

52

Computer
ScienceScience

But CHS is unrealistic in modern drives:

low density in outer cylinders!

53

Computer
ScienceScience

Modern drives use logical block addressing (LBA)

- number blocks starting from 0 (innermost)
to outermost, then back in on reverse side

- problem: no disk geometry info!

- not so bad: LBAi, LBAi+1 are at most
1 cylinder apart

54

Computer
ScienceScience

Disk head scheduling problem:

- given requests B1, B2, … from
processes, what seek order to send to
disk controller?

55

Computer
ScienceScience

Analogs to scheduling approaches:

- First come, first served (FCFS)

- Shortest Seek Time First (SSTF)

- Nearest Block Number First (NBNF)

56

Computer
ScienceScience

as before, SSTF can result in starvation —
or at best poor request latency!

57

Computer
ScienceScience

how to alleviate starvation problem, and
optimize wait time, responsiveness, etc.?

58

Computer
ScienceScience

“Elevator” Algorithms

59

Computer
ScienceScience

SCAN:

- track from spindle ↔ edge of disk
- only service requests in the current
direction of travel

- keep heading towards spindle/edge
even if no requests in that direction

60

Computer
ScienceScience

Variants of SCAN:

- C-SCAN: “circular” tracking

- F-SCAN: “freeze” request queue on
direction change

61

Computer
ScienceScience

LOOK:

- reverse direction when no more requests

- variants: C-LOOK, F-LOOK

62

Computer
ScienceScience

Demo: UTSA disk-head simulator

63

Computer
ScienceScience

… but FSes may span more than just one
storage device!

64

Computer
ScienceScience

¶ Volumes and Partitions

65

Computer
ScienceScience

Why volumes & partitions?

- separate logical & physical storage layers

- allow M:N mapping between FSes & disks

66

Computer
ScienceScience

A volume is a logical storage area.

A partition is a slice of a physical disk.

- a disk may have zero or more partitions

- a partition may contain a volume

- a volume may span one or more partitions

- a volume may exist independently of a partition
(e.g., ISO/DMG files)

67

Computer
ScienceScience

courtesy Wikimedia Commons
GUID partition table scheme

68

Computer
ScienceScience

(typically) partition ≤ volume ≤ FS

- inter-partition / inter-volume FS
operations are more expensive!

- separate metadata structures

- separate caches

69

Computer
ScienceScience

¶ Names and Paths

70

Computer
ScienceScience

Requirement: a fully qualified filename
uniquely identifies a set of data blocks on disk

- big filenames & "flat" namespace work,
but are hard to reason about

- prefer hierarchical namespaces

- fully qualified filename = name + path

71

Computer
ScienceScience

/home/lee/cs450/slides/fs.pdf

- absolute path

- from “/home/lee/cs450”,
relative path is “./slides/fs.pdf”

- (“.” = current directory)

72

Computer
ScienceScience

- one or more root namespaces

- typically can mount additional
filesystems onto global namespace

- support for multiple filesystems

73

Computer
ScienceScience

e.g., Windows:

- C:\foo.txt vs. D:\foo.txt

e.g., Unix

- /home/lee/foo.txt
vs. /mnt/cdrom/foo.txt

74

Computer
ScienceScience

What's in a name?

- path → file must be unique

- file → path??

- consider aliases/shortcuts:

- /bin/prog ↔ /home/lee/foo_prog

- different paths may refer to same file

75

Computer
ScienceScience

Directories provide linking structures

- directory maps name → file identifier

- file id is implementation specific

- directories are also files (recursive def)

76

Computer
ScienceScience

Link types:

- hard link: different names (possibly in
different directories) map to same file

- remove all hard links = removing file

- soft/symbolic link: file containing the
name of another file

- independent of whether file exists

77

Computer
ScienceScience

note: soft links are possible across partitions/
volumes, but hard links aren’t (usually)

78

Computer
ScienceScience

To “find” a file:

- just need location of root directory

- search recursively for path components

- trickier with multiple FSes

- each logical volume of data contains its
own high level metadata

79

Computer
ScienceScience

¶ File space allocation

80

Computer
ScienceScience

mapping problem: for a given file (by path
or id), find (ordered) list of data blocks

81

Computer
ScienceScience

considerations:

- good disk utilization

- efficiency (w.r.t. HDD seeks)

- random access

- scaleability

82

Computer
ScienceScience

basic strategies:

- contiguous

- linked (decentralized)

- centralized

- linked

- indexed

83

Computer
ScienceScience

11.16 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Contiguous Allocation of Disk Space

contiguous allocation

directory may double
as metadata store, too
(e.g., mode, owner)

84

Computer
ScienceScience

pros:

- ideal for sequential HDD reads; reduce
seeks → fast!

- random access is trivial

cons:

- clear disadvantage: fragmentation

- affects utilization, placement (“all or
nothing”), resizing

85

Computer
ScienceScience

not used on its own, but contiguous extents
are used in most modern file systems

- multiple of block size — variable size

- reserve in advance during allocation

- balance fragmentation & efficiency

86

Computer
ScienceScience

11.20 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Linked Allocation

linked allocation (decentralized)

block metadata

block data

87

Computer
ScienceScience

pros:

- good utilization + allows resizing

cons:

- fragmentation → lot of seeks = slow!

- no random access

- hard to protect file metadata!

88

Computer
ScienceScience

11.21 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

File-Allocation Table

linked allocation (centralized)

stored as
per-volume
metadata!

89

Computer
ScienceScience

pros:

- allows for random access

- used with extents, can limit fragmentation

disadvantages:

- centralized file metadata (robustness?)

- overhead incurred by central FAT

- hard limit on volume size!

90

Computer
ScienceScience

also, unless directories maintain metadata,
central structure has very limited space

e.g., where to put mode, ownership, ACL,
timestamp, etc.?

91

Computer
ScienceScience

e.g., MS-DOS file-allocation table (FAT)

- FAT12, FAT16, FAT32 variants (based
on sizes of FAT entry)

92

Computer
ScienceScience

some MS FAT terminology:

“sector”: physical disk block (512 bytes)

“cluster”: fixed-size extent of 1-256 sectors

	 (512 bytes - 128KB)

93

Computer
ScienceScience

some limits:

FAT12: 4K clusters x 512 = 2MB

FAT16: 64K clusters x 8K = 512MB

FAT32: only 28-bits of FAT entry useable,

	 268M clusters x 8K = 2TB

94

Computer
ScienceScience

FAT12 requirements : 3 sectors on each copy of FAT for every 1,024 clusters
FAT16 requirements : 1 sector on each copy of FAT for every 256 clusters
FAT32 requirements : 1 sector on each copy of FAT for every 128 clusters

FAT12 range : 1 to 4,084 clusters : 1 to 12 sectors per copy of FAT
FAT16 range : 4,085 to 65,524 clusters : 16 to 256 sectors per copy of FAT
FAT32 range : 65,525 to 268,435,444 clusters : 512 to 2,097,152 sectors per copy of FAT

FAT12 minimum : 1 sector per cluster × 1 clusters = 512 bytes (0.5 KiB)
FAT16 minimum : 1 sector per cluster × 4,085 clusters = 2,091,520 bytes (2,042.5 KiB)
FAT32 minimum : 1 sector per cluster × 65,525 clusters = 33,548,800 bytes (32,762.5 KiB)

FAT12 maximum : 64 sectors per cluster × 4,084 clusters = 133,824,512 bytes (≈ 127 MiB)
[FAT12 maximum : 128 sectors per cluster × 4,084 clusters = 267,694,024 bytes (≈ 255 MiB)]

FAT16 maximum : 64 sectors per cluster × 65,524 clusters = 2,147,090,432 bytes (≈2,047 MiB)
[FAT16 maximum : 128 sectors per cluster × 65,524 clusters = 4,294,180,864 bytes (≈4,095 MiB)]

FAT32 maximum : 8 sectors per cluster × 268,435,444 clusters = 1,099,511,578,624 bytes (≈1,024 GiB)
FAT32 maximum : 16 sectors per cluster × 268,173,557 clusters = 2,196,877,778,944 bytes (≈2,046 GiB)
[FAT32 maximum : 32 sectors per cluster × 134,152,181 clusters = 2,197,949,333,504 bytes (≈2,047 GiB)]
[FAT32 maximum : 64 sectors per cluster × 67,092,469 clusters = 2,198,486,024,192 bytes (≈2,047 GiB)]
[FAT32 maximum : 128 sectors per cluster × 33,550,325 clusters = 2,198,754,099,200 bytes (≈2,047 GiB)]

source: https://en.wikipedia.org/wiki/File_Allocation_Table

95

Computer
ScienceScience

file size limit theoretically = disk limit,

but directory implementation constrains
file sizes to 4GB in FAT32

96

Computer
ScienceScience

11.23 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Example of Indexed Allocation

indexed allocation

97

Computer
ScienceScience

files identified by index block number

- a.k.a. inode number

- directory is an inode “registry”

- index of file name → inode #

- each entry is a hard link

- directories are files, too, so they also
have inodes

98

Computer
ScienceScience

pros:

- allows for random access

- natural metadata store

- used with extents, can limit fragmentation

disadvantages:

- overhead incurred by index nodes

- limit on file size (# block references)

99

Computer
ScienceScience

e.g., Unix File System, UFS (and all its
	 descendants)

100

“super”
block

inodes

data blocks

101

Computer
ScienceScience

superblock contains FS metadata

- size of logical blocks

- location & number of inodes

inodes section contains per-file metadata

- # inodes = max # files

102

Computer
ScienceScience

file metadata
(e.g., type, ownership,
access time, # links)

direct pointers

single indirect pointer

double indirect pointer

triple indirect pointer

data block

data block

direct
pointers

data block

data block

single indirect
pointers

direct
pointers

direct
pointers

data block

data block

“inode” block

note: indirect blocks are
stored in data area of volume!

103

Computer
ScienceScience

e.g., UFS properties:

- max disk / file size?

- 32-bit i-node pointers

- 4KB i-node/data blocks

- 8 direct, 2 single indirect, 1 double
indirect pointer per i-node

104

Computer
ScienceScience

max disk size = 4G x 4KB = 16TB

- 32-bit i-node pointers

- 4KB i-node/data blocks

- 8 direct, 2 single indirect, 1 double
indirect pointer per i-node

105

Computer
ScienceScience

directly addressed: 8 x 4KB = 32KB

- 32-bit i-node pointers

- 4KB i-node/data blocks

- 8 direct, 2 single indirect, 1 double
indirect pointer per i-node

106

Computer
ScienceScience

each indirect block can hold 4KB / 4 bytes

= 1K pointers

- 32-bit i-node pointers

- 4KB i-node/data blocks

- 8 direct, 2 single indirect, 1 double
indirect pointer per i-node

107

Computer
ScienceScience

single indirect pointer = 1K x 4KB = 4MB

two single indirect = 8MB

- 32-bit i-node pointers

- 4KB i-node/data blocks

- 8 direct, 2 single indirect, 1 double
indirect pointer per i-node

108

Computer
ScienceScience

double indirect pointer = 1K x 1K x 4KB

= 4GB

- 32-bit i-node pointers

- 4KB i-node/data blocks

- 8 direct, 2 single indirect, 1 double
indirect pointer per i-node

109

Computer
ScienceScience

max file size = 32KB + 8MB + 4GB

† variable # block requests per data request
(depending on location in file!)

- 32-bit i-node pointers

- 4KB i-node/data blocks

- 8 direct, 2 single indirect, 1 double
indirect pointer per i-node

110

Computer
ScienceScience

how to keep FS decoupled from OS?

111

Computer
ScienceScience

need a middle layer — a mediator between
FS specific constructs & abstract OS file-
related operations

112

Computer
ScienceScience

VFS: “Virtual File System” layer

- Unix centric API between syscall API
(open/close/read/write) & FSes

- every FS must implement generic
analogues of: inode, file, superblock, dentry

113

Computer
ScienceScience

each FS object has a table of function
pointers (e.g., open/close/read/write) that
are used by VFS to map syscalls

114

Computer
ScienceScience

¶ Free space tracking

115

Computer
ScienceScience

1. linked free blocks

2. free space bitmap

3. general disk-based data structures

116

Computer
ScienceScience

1. linked free blocks

- no overhead

- but expensive to traverse!

- can optimize as a skip list

- useful for extent search

11.33 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Linked Free Space List on Disk

free list
head

117

Computer
ScienceScience

bit[i] =


 0 ⇒ block[i] occupied

1 ⇒ block[i] free

0 1 2 ... n-1

- simple to maintain & fast!
- use machine instr. to locate first ‘1’

2. free space bitmap

118

Computer
ScienceScience

- block size = 212 bytes (4KB)

- disk size = 1TB = 240 bytes

- free space bitmap = 228 bits (32MB)

- small enough to keep in memory

- but beware synch issues

119

Computer
ScienceScience

optimization:

- break bitmap into subsets & build
index of # free blocks → subset

- speed up extent search

- can lock subsets separately

120

Computer
ScienceScience

3. general disk-based data structures

e.g., B+ tree

balanced search tree with very large
branching factor (# pointers per block)

— worth it?

121

Computer
ScienceScience

§FS Robustness

122

Computer
ScienceScience

we like to think of the FS (unfortunately)
as the “rock” of the OS

— when things go wrong (e.g., BSoD/
panic), hard restart and count on persisted
data to save us

123

Computer
ScienceScience

i.e., FS can’t count on OS to play nice!

e.g., unannounced crashes, incomplete
operations, unflushed buffers, etc.

124

Computer
ScienceScience

cannot ensure durability of in-memory
data, but want to preserve validity of the
file system when possible

e.g., file metadata is accurate, persisted
data is not corrupted, etc.

125

Computer
ScienceScience

Q: what might happen when a crash occurs?

126

Computer
ScienceScience

important: differentiate between in-memory
(cached) and on-disk (persistent) structures

note: FS aggressively caches data!

127

Computer
ScienceScience

e.g., disk block allocation

1. update free bitmap

2. update inode

128

1. update cached free bitmap
2. update vnode
3. write back inode
4. write back disk bitmap

crash
(durability problem)

129

Computer
ScienceScience

user responsibility; e.g., Unix fsync syscall

130

1. update cached free bitmap
2. update vnode
3.
4.

crash
(“free” space in use!)

write back inode
write back disk bitmap

131

crash
(lost space)

write back disk bitmap
write back inode

1. update cached free bitmap
2. update vnode
3.
4.

132

e.g., file deletion (# links = 0)
1.
2.

free inode & data blocks
remove directory link

crash
(“free” space in use!)

133

free inode & data blocks
remove directory link

e.g., file deletion (# links = 0)
1.
2.

crash
(“orphaned” inodes)

134

Computer
ScienceScience

imminent data corruption vs. storage “leak”

(lesser of two evils)

135

Computer
ScienceScience

soft updates: order software updates so that,
in worst case, we only ever leak free space

— generally speaking, update
free-space structures last

136

Computer
ScienceScience

leaked space isn’t permanent!

can perform manual consistency check of FS

137

Computer
ScienceScience

e.g., UFS

- manually walk through all i-nodes and
directory structures

- allocated i-nodes with 0 links can be
reused

- allocated blocks with no referencing i-
nodes can be “garbage collected”

138

Computer
ScienceScience

the notorious “fsck” can report:

- Unreferenced inodes

- Link counts in inodes too large

- Missing blocks in the free map

- Blocks in the free map also in files

- Counts in the super-block wrong

139

Computer
ScienceScience

BUT!

soft updates isn’t trivial to implement, and
may also conflict with caching needs

no good! FS is already messy to begin with!

140

Computer
ScienceScience

another approach to FS robustness:

journaling / logging

141

a. say what you’re about to do
b. do it
c. say that you did it

142

a. record what you’re about to do
b. indicate that you finished (a)
c. do it
d. record that you did it

143

a. record FS update in journal entry
b. ensure journal entry is persisted
c. perform FS update
d.commit/delete journal entry

crash

no journal entry on reboot;
no possible of FS inconsistency

144

a. record FS update in journal entry
b. ensure journal entry is persisted
c. perform FS update
d.commit/delete journal entry

crash

on reboot, find partial journal entry;
no FS data corruption possible

145

a. record FS update in journal entry
b. ensure journal entry is persisted
c. perform FS update
d.commit/delete journal entry

on reboot, journal shows incomplete FS update;
replay entry to ensure FS consistency

crash

146

a. record FS update in journal entry
b. ensure journal entry is persisted
c. perform FS update
d.commit/delete journal entry

crash
detect completed operation;

commit/delete entry

147

Computer
ScienceScience

journal enables FS transactions

crash → replay journal;

 skip incomplete entries

148

Computer
ScienceScience

drawback?

huge overhead — “write-twice” penalty

† cannot delay persisting journal entries

149

Computer
ScienceScience

ease overhead: physical vs. semantic journals

physical = record block-level data in journal

semantic = record logical intent when possible

150

Computer
ScienceScience

also, ensuring FS consistency arguably more
important than short-term data loss

complete vs. metadata-only journal

151

Computer
ScienceScience

Q: is there a way to eliminate the write-
twice penalty and still get transactional
behavior?

152

Computer
ScienceScience

hint: think back to persistent data
structures used to implement MVCC

153

Computer
ScienceScience

“there is no spoon”

(the file system is the journal)

154

Computer
ScienceScience

log-structured FS: all FS updates are
persisted to the end of the journal

- file updates are effectively copy-on-write

- current FS state = log replay

155

Computer
ScienceScience

for efficiency, periodically:

- garbage collect unreachable blocks,
deleted files, etc., from log

- write FS checkpoints to avoid full
replay

156

Computer
ScienceScience

interesting benefit of LFS: most writes are
sequential (but reads are scattered
throughout the log)

157

Computer
ScienceScience

nifty idea, but horrible fragmentation!

impractical with HDDs, but what about SSDs?

- robustness w/o write-twice penalty.
Hmmmmmmmm.

158

Computer
ScienceScience

interesting: SSDs already kind of do LFS
with TRIM wear leveling — writes occur
elsewhere on disk from “replaced” block

- long term performance of SSDs has
similar pattern to LFSes

- SSDs are also fast-to-read, slower-to-
write

159

So updates, journaling, and LFSes
= soware based solutions

160

hard drive crash? #$%&#$#!!!!

161

Computer
ScienceScience

§Hardware level
robustness

162

Computer
ScienceScience

mean time to failure

163

Computer
ScienceScience

1,000,000+ hours!

164

Computer
ScienceScience

“crap”

165

Computer
ScienceScience

166

Computer
ScienceScience

raw numbers, are likely to be good indicators of some-
thing really bad with the drive. Filtering for spurious
values reduced the sample set size by less than 0.1%.

3 Results

We now analyze the failure behavior of our fleet of disk
drives using detailed monitoring data collected over a
nine-month observation window. During this time we
recorded failure events as well as all the available en-
vironmental and activity data and most of the SMART
parameters from the drives themselves. Failure informa-
tion spanning a much longer interval (approximately five
years) was also mined from an older repairs database.
All the results presented here were tested for their statis-
tical significance using the appropriate tests.

3.1 Baseline Failure Rates

Figure 2 presents the average Annualized Failure Rates
(AFR) for all drives in our study, aged zero to 5 years,
and is derived from our older repairs database. The data
are broken down by the age a drive was when it failed.
Note that this implies some overlap between the sample
sets for the 3-month, 6-month, and 1-year ages, because
a drive can reach its 3-month, 6-month and 1-year age
all within the observation period. Beyond 1-year there is
no more overlap.
While it may be tempting to read this graph as strictly

failure rate with drive age, drive model factors are
strongly mixed into these data as well. We tend to source
a particular drive model only for a limited time (as new,
more cost-effective models are constantly being intro-
duced), so it is often the case that when we look at sets
of drives of different ages we are also looking at a very
different mix of models. Consequently, these data are
not directly useful in understanding the effects of disk
age on failure rates (the exception being the first three
data points, which are dominated by a relatively stable
mix of disk drive models). The graph is nevertheless a
good way to provide a baseline characterization of fail-
ures across our population. It is also useful for later
studies in the paper, where we can judge how consistent
the impact of a given parameter is across these diverse
drive model groups. A consistent and noticeable impact
across all groups indicates strongly that the signal being
measured has a fundamentally powerful correlation with
failures, given that it is observed across widely varying
ages and models.
The observed range of AFRs (see Figure 2) varies

from 1.7%, for drives that were in their first year of op-
eration, to over 8.6%, observed in the 3-year old pop-

Figure 2: Annualized failure rates broken down by age groups

ulation. The higher baseline AFR for 3 and 4 year old
drives is more strongly influenced by the underlying re-
liability of the particular models in that vintage than by
disk drive aging effects. It is interesting to note that our
3-month, 6-months and 1-year data points do seem to
indicate a noticeable influence of infant mortality phe-
nomena, with 1-year AFR dropping significantly from
the AFR observed in the first three months.

3.2 Manufacturers, Models, and Vintages

Failure rates are known to be highly correlated with drive
models, manufacturers and vintages [18]. Our results do
not contradict this fact. For example, Figure 2 changes
significantly when we normalize failure rates per each
drive model. Most age-related results are impacted by
drive vintages. However, in this paper, we do not show a
breakdown of drives per manufacturer, model, or vintage
due to the proprietary nature of these data.
Interestingly, this does not change our conclusions. In

contrast to age-related results, we note that all results
shown in the rest of the paper are not affected signifi-
cantly by the population mix. None of our SMART data
results change significantly when normalized by drive
model. The only exception is seek error rate, which is
dependent on one specific drive manufacturer, as we dis-
cuss in section 3.5.5.

3.3 Utilization

The literature generally refers to utilization metrics by
employing the term duty cycle which unfortunately has
no consistent and precise definition, but can be roughly
characterized as the fraction of time a drive is active out
of the total powered-on time. What is widely reported in
the literature is that higher duty cycles affect disk drives
negatively [4, 21].

Failure Trends in a Large Disk Drive Population (Google, FAST ‘07)

167

Computer
ScienceScience

hard drive failure:

question of when, not if!

168

Computer
ScienceScience

redundancy

169

Computer
ScienceScience

preventing downtime

preventing data loss

170

Computer
ScienceScience

Redundant Array of Independent Disks

171

Computer
ScienceScience

data robustness

172

Computer
ScienceScience

secondary objectives:

- increased capacity

- improved performance

173

Computer
ScienceScience

RAID array = one logical disk

174

Computer
ScienceScience

transparent to OS/FS (ideally)

175

Computer
ScienceScience

software vs. hardware RAID

176

Computer
ScienceScience

RAID “levels”

177

Computer
ScienceScience

combination of techniques

1. mirroring

2. striping

3. parity

178

Computer
ScienceScience

Data bits Odd Parity Even Parity

0101010 00101010 10101010

0000011 10000011 00000011

179

Computer
ScienceScience

Diagram courtesy Wikipedia

180

Computer
ScienceScience

// x = A, y = B
x = x ^ y ; // x = A^B
y = x ^ y ; // y = A^B^B = A
x = x ^ y ; // x = A^B^A = B

B1 ⊕ B2 ⊕ … ⊕ BN-1 ⊕ BN ⇒ BP

B1 ⊕ B2 ⊕ … ⊕ BN-1 ⊕ BP ⇒ BN

181

Computer
ScienceScience

figures courtesy Wikimedia Commons

182

Computer
ScienceScience

183

Computer
ScienceScience

184

Computer
ScienceScience

185

Computer
ScienceScience

186

Computer
ScienceScience

Update: A1 ⊕ A2 ⊕ A3 ⊕ A3 ⊕ A3ʹ′ ⇒ APʹ′

bottleneck!

187

Computer
ScienceScience

188

Computer
ScienceScience

write penalty

189

Computer
ScienceScience

battle against any raid five

http://www.baarf.com/

190

Computer
ScienceScience

data & parity updates separate

191

Computer
ScienceScience

failure in between?

192

Computer
ScienceScience

write hole

193

Computer
ScienceScience

caching /

non-volatile storage

194

Computer
ScienceScience

vs. RAID 10

195

Computer
ScienceScience

196

Computer
ScienceScience

197

Computer
ScienceScience

§Case study: xv6 (Unix)

198

