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Agenda

- Goncurrency: what, why, how
- Problems due to concurrency
- Locks & Locking strategies

- Goncurrent programming with
semaphores
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SConcurrency: what,
why, how
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concurrency (In computing) = two or
more overlapping threads of execution

thread [of execution| = a sequence of
mstructions and associated state
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parallelism (enabled by > 1 physical GPUs)

1s one way of realizing concurrency

... but concurrency can also be achieved

via single-GPU multiplexing!
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even on multi-CGPU systems, GPU
multiplexing is performed to achieve /ugher
levels of concurrency (vs. hw parallelism)
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why concurrency?
l. multitasking
2. separate blocking activities
3. 1mprove resource utilization

4. performance gains (most elusive!)
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standard unit of concurrency: process

- single thread of execution “owns”
virtualized CGPU, memory

- (mostly) share-nothing architecture
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int main() {
pid_t pid;
for (int i=0; 1i<5; 1i++) {
if ((pid = fork()) == 0) {
printf("Child %d says hello!\n", 1);

exit(0);
} else {
printf("Parent created child %d\n", pid);
}
b
return 0;

Child 0 says hello!
Parent created child
Parent created child
Child 1 says hello!
Parent created child

Parent created child
Child 3 says hello!
Child 2 says hello!
Child 4 says hello!
Parent created child
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but single-thread model 1s inconvenient /
non-ideal 1n some situations
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e.g., sequential operations that block on
unrelated resources

read_from_diskl(bufl); // block for input
read_from_disk2(buf2); // block for -dinput
read_from_network(buf3); // block for input
process_1input(bufl, buf2, buf3);

would like to mmitiate input from separate
blocking resources simultaneously
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e.g., interleaved, but independent

CPU & 1/0 operations

while (1) {
long_computation(); // CPU-intensive
update_log_file(); // blocks on I/0

}

would like to start next computation

while performing (blocking) log output
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e.g., Independent computations over

large data set (software SIMD)

int A[DIM][DIM], /* src matrix A */
B[DIM][DIM], /* src matrix B */
C[DIM][DIM]; /* dest matrix C */

/* C=A x B */ .
void matrix_mult () { eaCh Cell 11 resu1t

int i, j, k; s L
for (i=b 1eDIN; Ge4) 1 1s Independent
for (3205 3<DIM; j++) { need not serialize!
CLi1[] = o;

for (k=0; k<DIM; k++)
CLi10j] += A[i1[k] * B[KkI[]j];
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within xv6 kernel there 1s no inherent
process primitive — instead, implement
concurrency via multiple kernel stacks (and
program counters + other context)
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1.e., multiple threads of execution,
one program
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Global (shared) 'T'hread-local

Code

"~

Data Stack Regs

- conlext
- | switch
\ 1 y
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xvb does not support multi-threads 1n user
processes, but most modern OSes do

- even 1f not supported by kernel, can
emulate multi-threading at user level

- same design: separate stacks & regs

- user implemented context switch
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multithreading libraries & APIs allow us
to use threads without worrying about
implementation details
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POSIX Threads (“pthreads”) 1s one API

for working with threads

- both kernel-level (aka natiwve) and user-
level (aka green) implementations exist
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native threads provide kernel-level support
for parallelism, but also increase context
switch overhead (full-fledged interrupt)
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/* thread creation */

int pthread_create ( pthread_t *tid,
const pthread_attr_t *attr,
void *(*thread_fn) (void *),
void *arg );

/* wait for termination; thread '"reaping" */
int pthread_join ( pthread_t tid,
void **result_ptr );
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void *sayHello (void *num) {
printf("Hello from thread %ld\n", (long)num);
pthread_exit(NULL);

}

int main () {
pthread_t tid;
for (int i=0; 1i<5; i++){
pthread_create(&tid, NULL, sayHello, (void *)1i);
printf("Created thread %ld\n", (long)tid);

}
pthread_exit(NULL);
return 0;

Created thread 4558688256
Created thread 4559224832
Created thread 4559761408
Hello from thread 0

Created thread 4560297984

Hello from thread 1
Hello from thread 3
Created thread 4560834560
Hello from thread 4
Hello from thread 2
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int A[DIM][DIM], /* src matrix A */
B[DIM] [DIM], /* src matrix B */
C[DIM][DIM]; /* dest matrix C */

/* C=A x B */
void matrix_mult () {
int i, j, k;
for (i=0; i<DIM; 1i++) {
for (j=0; j<DIM; j++) {
CLil[j] = 03
for (k=0; k<DIM; k++)

Cli103] += A[1]1[k] * B[KI[31;

Run time, with DIM=50, &k

user

500 1terations: BE

Oml.279s
Oml.260s
OmO.012s
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void run_with_thread_per_cell() {
pthread_t ptd[DIM][DIM];
int index[DIM][DIM][2];

for(int i = 0; i < DIM; 1 ++)
for(int j = 05 j < DIM; j ++) {
index[1][j1[0] = 1;
index[11[31[1] = i;
pthread_create(&ptd[i][j], NULL,
row_dot_col,
index[i1[j1);
}

for(i = 0; i < DIM; i ++)
for(j = 0; j < DIM; j ++)
pthread_join( ptd[i1[j], NULL);

Run time, with DIM=50,

500 1terations:

void row_dot_col(void *index) {
int *pindex = (int *)index;
int 1 = pindex[0];
int j = pindex[1];

Clil1[j] = 0;

for (int x=0; x<DIM; x++)

CLiJ[J] += A[T]IxI*BIx][j]1;

4ml18.013s

Om33.655s
4m31.936s
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void run_with_n_threads(int num_threads) {
pthread_t tid[num_threads];
int tdatal[num_threads][2];
int n_per_thread = DIM/num_threads;

for (int i=0; 1i<num_threads; i++) {
tdatal[i][0] i*n_per_thread;
tdatal[i][1] (i < num_threads)

? ((i+l)*n_per_thread)-1

: DIM;
pthread_create(&tid[i], NULL,
compute_rows,
tdatal[i]);
+
for (int i=0; 1di<num_threads; i++)
pthread_join(tid[i], NULL);

void *compute_rows(void *arg) {
int *bounds = (int *)arg;
for (int i=bounds[0];
i<=bounds[1];

i++) {
for (int j=0; j<DIM; j++) {
CLiI[i] = o;

for (int k=0; k<DIM; k++)
CLi1[3] += A[i][k]
* BLkI[3];
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but matrix multiplication happens to be
an embarrassingly parallelizable computation!

- not typical of concurrent tasks!
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computations on shared data are typically
interdependent (and this 1sn’t always obvious!)

— may 1mpose a cap on parallelizeability
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Amdhal’s law predicts max speedup given
twO parameters:

- P : fraction of program that’s parallelized

- N : # of execution cores
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max speedup S =—
N

(1-P)

TP—>1;,5— N
I N—>oo;, §S— 1/(1- P)
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Amdahl’'s Law
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note: Amdahl’s law 1s based on a fixed

problem size (with fixed parallelized portion)

— but we can argue that as we have more
computing power we simply tend to throw
larger / more granular problem sets at 1t
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€.g.,

oraphics processing: keep turning up
resolution/detail

weather modeling: increase model
parameters/accuracy

chess/weiqi Al: deeper search tree
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Gustatson & Barsis posit that

- we tend to scale problem size to
complete 1n the same amount of time,
regardless of the number of cores

- parallelizeable amount of work scales
linearly with number ot cores
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Gustatson’s Law computes speedup
based on:

- N cores

- non-parallelized fraction, P
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speedup S = N—- P - (N — 1)

- note that speedup 1s linear with respect
to number of cores!
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Speedup: S
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Amdahl’s vs. Gustafson’s:

- latter has rosier implications for big
data analysis / data science

- but not all datasets naturally
expand / increase in resolution

- both stress the import of maximizing
the parallelizeable fraction
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some of the primary challenges of
concurrent programming are to:

1. 1dentity thread interdependencies
2. identity (1)’s potential ramifications

3. ensure correctness
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e.g., final change in count? (expected = 2)

Thread A Thread B

al count = count + 1 bl count = count + 1

interdependency: shared var count
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factoring in machine-level granularity:

Thread A Thread B
al 1lw (count), %rO bl 1w (count), %rO
a2 add $1, %rO b2 add $1, %rO
ad sw %r0, (count) b3 sw Y%r0, (count)

answer: either +1 or +2!
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race condition(s) exists when results
are dependent on the order of execution of
concurrent tasks
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shared resource(s) are the problem

or, more specifically, concurrent mutability
of those shared resources

ﬁ.{-‘,’ IIT College of Science

,/ ILLINOIS INSTITUTE OF TECHNOLOGY



code that accesses
shared resource(s)

= cntical section
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synchronization:

time-sensitive coordination of critical
sections so as to avoid race conditions
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e.g., specific ordening of different threads, or
mutually excluswe access to variables
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important: try to separate application logic
from synchronization details

- another 1nstance ot policy vs. mechanism

- this can be hard to get right!
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most common technique for implementing
synchronization 1s via software “locks”

- explicitly required & released by
consumers of shared resources
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SLocks & Locking
Strategies
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basic 1dea:

- create a shared software construct that
has well defined concurrency semantics

- aka. a “thread-sate” object

- Use this object as a guard for another,
un-thread-sate shared resource
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Thread A Thread B

al count = count + 1 bl count = count + 1

O
O
o
-
r'.
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Thread A Thread B

al count = count + 1 bl count = count + 1

O
O
o
-
r'.
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Thread A Thread B

al count = count + 1 bl count = count + 1
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Thread A Thread B

al count = count + 1 bl count = count + 1

O
O
o
-
r'.

?zon;

- - -y
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Thread A Thread B

al count = count + 1 bl count = count + 1

O
O
o
-
r'.
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locking can be:
- global (coarse-grained)

- per-resource (fine-grained)
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coarse-grained locking policy
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coarse-grained locking:
-1s (typically) easier to reason about
- results 1n a lot of lock contention

- could result 1n poor resource utilization —
may be impractical for this reason
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fine-grained locking policy
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fine-grained locking:
- may reduce (individual) lock contention
- may 1mprove resource utilization
- can result 1n a lot of locking overhead

- can be much harder to verity correctness!
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so tar, have only considered mutual exclusion

what about 1nstances where we require a
specific order ot execution?

- often very difficult to achieve with
simple-minded locks
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SAbstraction:
Semaphore

=
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®no The Little Book of Semaphores

[ < | » ] [ o= I@ http://www.greenteapress.com/semaphores/ C] (Qv Google Q)
M

. f

Green The Little Book of |
Semaphores |

Tea |
Second Edition |

U

Press Allen B. Downey

Download the book in PDF now!

The Little Book of Semaphores is a free
(in both senses of the word) textbook
that introduces the principles of
synchronization for concurrent
programming.

In most computer science curricula,
synchronization is a module in an
Operating Systems class. OS textbooks
present a standard set of problems with

Green Tea Home Page a standard set of solutions, but most
students don't get a good
ggﬁmgNs understanding of the material or the
ACCEFPTED

ability to solve similar problems.

Z

Lattle Book of Semaphores
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Semaphore rules:

1. When you create the semaphore, you can initialize its value to any integer,
but after that the only operations you are allowed to perform are increment
(increase by one) and decrement (decrease by one). You cannot read the
current value of the semaphore.

2. When a thread decrements the semaphore, if the result is negative, the
thread blocks itself and cannot continue until another thread increments
the semaphore.

3. When a thread increments the semaphore, if there are other threads wait-
ing, one of the waiting threads gets unblocked.
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Initialization syntax:

1 fred = Semaphore(1)
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Operation names?

1 fred.increment_and_wake_a_waiting_process_if_any()

2 fred.decrement_and_block_if_the_result_is_negative()
1 fred.increment ()

2 fred.decrement ()

fred.signal ()

fred.wait ()

1 fred.V()
2 fred.P()
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How to use semaphores for
synchronization?

1. Identify essential usage “patterns”

2. Solve “classic” synchronization
problems
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Essential synchronization criteria:

1. avoid starvation

2. guarantee bounded waiting

3. no assumptions on relatwe speed (ot threads)

4. allow tor maximum concurrency
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Q Using Semaphores for

Synchronization
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Basic patterns:
[. Rendezvous
II. Mutual exclusion (Mutex)
[11. Multiplex

IV. Generalized rendezvous / Barrier
& Turnstile
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I. Rendezvous

Thread A Thread B
1 statement al 1 statement b1l
2 statement a2 2 statement b2

Guarantee: al < 02,51 < a2
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aArrived = Semaphore(0)

bArrived = Semaphore (0)
Thread A Thread B
1 statement al 1 statement bl
2 aArrived.signal() 2 DbArrived.signal()
3 DbArrived.wait () 3 alArrived.wait ()
4 statement a2 4 statement b2
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Note: Swapping 2 & 3 — Deadlock!

Thread A Thread B
1 statement al 1 statement bl
2 DbArrived.wait() 2 aArrived.wait()
3 alArrived.signal() 3 DbArrived.signal()
4 statement a2 4 statement b2
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II. Mutual exclusion

Thread A Thread B

count = count + 1 count = count + 1
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mutex = Semaphore(1)

Thread A

mutex.wait ()
# critical section
count = count + 1
mutex.signal ()

Thread B

mutex.wait ()
# critical section
count = count + 1
mutex.signal ()
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III. multiplex = Semaphore(N)

I multiplex.wait()
2 critical section
3 multiplex.signal()
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IV. Generalized Rendezvous / Barrier

Puzzle: Generalize the rendezvous solution. Every thread should run the
following code:

Listing 3.2: Barrier code

1 rendezvous
2 critical point
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=0 DN

n = the number of threads
count = 0O

mutex = Semaphore (1)
barrier = Semaphore(0)

\
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.
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rendezvous
mutex.wait ()

count = count + 1
mutex.signal ()

if count == n: barrier.signal()

barrier.wait ()
barrier.signal ()

critical point

\
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rendezvous
mutex.wait ()
count = count + 1

mutex.signal ()

if count == n: turnstile.signal()

© 00 ~J O T i W N+~

turnstile.wait ()

10 turnstile.signal()
11
12 critical point

state of turnstile after all threads make 1t to 12?

= IIT College of Science
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rendezvous
mutex.wait ()

if count ==
mutex.signal ()

turnstile.wait ()
turnstile.signal ()

© 00 ~J O O i W b+

—_—
= O

critical point

count = count + 1

turnstile.signal ()

fix for non-determinism (but still oft by one)
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next: would like a reusable barrier

need to re-lock turnstile
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rendezvous

mutex.wait ()

count += 1

if count == n: turnstile.signal()
mutex.signal ()

turnstile.wait ()
turnstile.signal()

critical point

mutex.wait ()

count -= 1

if count == 0: turnstile.wait()
mutex.signal ()

(doesn’t work!)
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turnstile = Semaphore(0)

2 turnstile2 = Semaphore(1)

3 mutex = Semaphore(1)

1 # rendezvous

2

3 mutex.wait ()

4 count += 1

5! if count == n:

6 turnstile2.wait () # lock the second
7 turnstile.signal() # unlock the first
8 mutex.signal()

9

10 turnstile.wait() # first turnstile
11 turnstile.signal()

12

13 # critical point

14

15 mutex.wait()

16 count -= 1

17 if count ==

18 turnstile.wait () # lock the first
19 turnstile2.signal() # unlock the second
20 mutex.signal()
21
22 turnstile2.wait() # second turnstile
23 turnstile2.signal()

of Science
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# rendezvous

mutex.wait ()
count += 1
if count == n:
turnstile.signal (n) ‘# unlock the first
mutex.signal ()

turnstile.wait () # first turnstile
# critical point
mutex.wait ()
count -= 1
if count == O:
turnstileQ.Signal(n)‘ # unlock the second

mutex.signal ()

turnstile2.wait () # second turnstile
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next: classic synchronization problems
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I. Producer / Consumer
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Assume that producers perform the following operations over and over:

Listing 4.1: Basic producer code

1 event = waitForEvent ()
2 buffer.add(event)

Also, assume that consumers perform the following operations:

Listing 4.2: Basic consumer code

1 event = buffer.get()
2 event.process()

important: buffer is finite and non-thread-safe!
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- finite, non-thread-safe buffer

- 1 semaphore per item/space

I mutex = Semaphore(1)
2 items = Semaphore(0)
3 spaces = Semaphore(buffer.size())
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Listing 4.11: Finite buffer consumer solution

J O O & W DN =

items.wait ()
mutex.wait ()

event = buffer.get()
mutex.signal ()
spaces.signal ()

event.process ()

Listing 4.12: Finite buffer producer solution

J O T & W DN =

event = waitForEvent ()

spaces.wait ()
mutex.wait ()
buffer.add(event)
mutex.signal ()
items.signal ()

,/ ILLINOIS INSTITUTE OF TECHNOLOGY
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II. Readers/Writers
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categorical mutex
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Listing 4.13: Readers-writers initialization

1 int readers = 0
2 mutex = Semaphore(1)
3 roomEmpty = Semaphore(1)
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Listing 4.14: Writers solution

I roomEmpty.wait ()
2 critical section for writers
3 roomEmpty.signal()
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Listing 4.15: Readers solution

O© 00 ~J O O i W N~

—_
w N = O

mutex.wait ()
readers += 1
if readers
roomEmpty.wait ()
mutex.signal ()

# first in locks

# critical section for readers

mutex.wait ()
readers -= 1
if readers
roomEmpty.signal () # last out unlocks
mutex.signal ()

Vv

= |IT College of Science
ILLINOIS INSTITUTE OF TECHNOLOGY



— “lightswitch” pattern
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Listing 4.16: Lightswitch definition

© 00 O O = Wi+~

e e e
0O J O Ot i WO

class Lightswitch:

def

def

def

__init__(self):
self.counter = O
self .mutex = Semaphore(1)

lock(self, semaphore):
self .mutex.wait ()
self.counter += 1
1f self.counter ==
semaphore.wait ()
self .mutex.signal ()

unlock(self, semaphore) :
self .mutex.wait ()
self.counter -= 1
1f self.counter ==
semaphore.signal ()
self .mutex.signal()

= IIT College of Science
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Listing 4.17: Readers-writers initialization

1 readlLightswitch = Lightswitch()
2 roomEmpty = Semaphore(1)

readLightswitch is a shared Lightswitch object whose counter is initially
ZETO.

Listing 4.18: Readers-writers solution (reader)

1 readLightswitch.lock(roomEmpty)
2 # critical section
3 readlightswitch.unlock(roomEmpty)
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recall criteria:
l.no starvation

2. bounded waiting

... but writer can starve!
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need a mechanism for the writer to
prevent new readers from getting
“around” 1t (and 1nto the room)

1.e., “single-file” entry

ﬁ.{-‘,’ IIT College of Science
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Listing 4.19: No-starve readers-writers initialization

1 readSwitch = Lightswitch()
2 roomEmpty = Semaphore(1)
3 turnstile = Semaphore(1)
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Listing 4.20: No-starve writer solution

1 turnstile.wait()
2 roomEmpty.wait ()
3 # critical section for writers
4 turnstile.signal()
D
6 roomEmpty.signal()
Listing 4.21: No-starve reader solution
1 turnstile.wait()
2 turnstile.signal()
3
4 readSwitch.lock(roomEmpty)
5! # critical section for readers
6 readSwitch.unlock(roomEmpty)

= |IT College of Science
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exercise for the reader: writer priority?
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bounded waiting?

- simple 1t we assume that threads blocking

On a sema;

bhore are queued (FIFO)

-1.e., threac

| blocking longest 1s woken next

- but semaphore semantics don’t require this
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— FIFO queue pattern

ooal: use semaphores to build a thread-safe
FIFO wait queue

orven: non-thread-sate queue
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approach:
- protect queue with shared mutex

- each thread enqueues 1ts own thread-
local semaphores and blocks on 1t

- to signal, dequeue & unblock a
semaphore

ﬁ.{-‘,’ IIT College of Science
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class FifoSem:
def __init__(self, val):
self.val = val # FifoSem’s semaphore value
self.mutex Semaphore(1) # possibly non-FIFO semaphore

self.queue = deque() # non-thread-safe queue
def wait(self):
barrier = Semaphore(0) # thread-local semaphore
block = False
self.mutex.wait() # modify val & queue in mutex

self.val -= 1
if self.val < O:
self.queue.append(barrier)
block = True
self.mutex.signal()
if block:
barrier.wait() # block outside mutex!

def signal(self):
self.mutex.wait() # modify val & queue 1in mutex
self.val += 1
if self.queue:
barrier = self.queue.popleft() # FIFO!
barrier.signal()
self.mutex.signal()
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hencetorth, we will assume that all
semaphores have built-in FIFO semantics
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[I1. “Dining Philosophers™ problem
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typical setup: protect shared resources with
semaphores

Listing 4.30: Variables for dining philosophers

1 forks = [Semaphore(l) for i in range(5)]

Listing 4.29: Which fork?

1 def left(i): return i
2 def right(i): return (i + 1) % 5
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solution requirements:
1. each fork held by one phil at a time
2.1n0o deadlock
3.1no philosopher may starve

4. max concurrency should be possible
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Naive solution:

def get_forks(i):
fork[right(i)].wait ()
fork[left(i)].wait()

def put_forks(i):
fork[right(i)].signal()
fork[left(i)].signal()

J O O I W N =

possible deadlock!
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Solution 2: global mutex

def get_forks(i):
mutex.wait ()
fork[right(i)].wait ()
fork[left(i)].wait ()
mutex.signal ()

O i~ W N =

no starvation & max concurrency?

- may prohibit a philosopher from eating
when his forks are available

if:'.-' IIT College of Science
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Solution 3: imit # diners

footman = Semaphore(4)

def get_forks(i):
footman.wait ()
fork[right(i)].wait()
fork[left(i)].wait()

def put_forks(i):
fork[right(i)].signal()
fork[left(i)].signal()
footman.signal ()

O© 00 J O O i W N+

no starvation & max concurrency?

ﬁf:'.-' IIT College of Science

!/ ILLINOIS INSTITUTE OF TECHNOLOGY



Solution 4: leftie(s) vs. rightie(s)

1 def get_forks(i):
2 fork[right(i)].wait ()
3 fork[left(i)].wait()

vs. (at least one ot each)

1 def get_forks(i):
2 fork[left(i)].wait()
3 fork[right(i)].wait()

no starvation & max concurrency?
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Solution 4: Tanenbaum’s solution

state = ['thinking'] * 5

sem

= [Semaphore(0) for i in range(5)]

mutex = Semaphore(1)

def

def

def

get_fork(i):
mutex.wait ()

state[i] = 'hungry'

test (1) # check neighbors’ states
mutex.signal ()
sem[i] .wait () # wait on my own semaphore

put_fork(i):

mutex.wait ()
state[i] = 'thinking'
test (right(i)) # signal neighbors if they can eat
test(left(i))

mutex.signal()

test(1):
if statel[i] == 'hungry' \
and state[left(i)] != 'eating' \
and statel[right(i)] != 'eating':
state[i] = 'eating'
sem[i] .signal () # this signals me OR a neighbor

no

starvation & max CONCUTITREIHERs of scence

ILLIN
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(starves)
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moral: synchronization problems are nsidious!
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[V. Dining Savages

THE SATURDAY EVENING POST

“Mugulu, how often have I told you not to play with your food?”’
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A tribe of savages eats communal dinners from a large
pot that can hold M servings of stewed missionary. When a
savage wants to eat, he helps himselt from the pot, unless it
1s empty. If the pot 1s empty, the savage wakes up the cook
and then waits until the cook has refilled the pot.

Listing 5.1: Unsynchronized savage code

1 while True:
2 getServingFromPot ()
3 eat ()

And one cook thread runs this code:

Listing 5.2: Unsynchronized cook code

1 while True:
2 putServingsInPot (M)
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Listing 5.1: Unsynchronized savage code

1 while True:
2 getServingFromPot ()
3 eat ()

And one cook thread runs this code:

Listing 5.2: Unsynchronized cook code

1 while True:
2 putServingsInPot (M)

rules:
- savages cannot invoke getServingFromPot if

the pot 1s empty
- the cook can invoke putServingsInPot only

1f the pot 1s empty
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hnt:

servings = 0

mutex = Semaphore(1)
emptyPot = Semaphore(0)
fullPot = Semaphore(0)

Listing 5.1: Unsynchronized savage code

1 while True:
2 getServingFromPot ()
3 eat ()

And one cook thread runs this code:

Listing 5.2: Unsynchronized cook code

1 while True:
2 putServingsInPot (M)
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Listing 5.4: Dining Savages solution (cook)

=~ N

while True:
emptyPot.wait ()
putServingsInPot (M)
fullPot.signal()

Listing 5.5: Dining Savages solution (savage)

—_
_ O © 0 J O O W =

| —

while True:
mutex.wait ()
if servings ==
emptyPot.signal ()
fullPot.wait ()
servings = M
servings -= 1
getServingFromPot ()
mutex.signal ()

eat ()

= |IT College of Science
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shared servings counter — scoreboard pattern

- arrtving threads check value of
scoreboard to determine system state

- note: scoreboard may consist of more
than one variable
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V. Baboon Crossing




cast
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gurantee rope mutex
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max ol b at a time
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solution consists of east&west baboon
threads:

I. categorical mutex
2. max of 5 on rope

3. no starvation

ﬁ.{-‘,’ IIT College of Science

,/ ILLINOIS INSTITUTE OF TECHNOLOGY



unsynchronized baboon code (identical for both sides)

1 while True:
2 climbOnRope ()
3 crossChasm()

hnt:

multiplex
turnstile
rope
e_switch
w_switch

Semaphore(5)
Semaphore(1)
Semaphore(1)
Lightswitch()
Lightswitch()

=
N
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Reminder: Lightswitch AD'T

0O O O = W N+

class Lightswitch:
def __init__(self):
self.counter = 0
self .mutex = Semaphore (1)

def lock(self, semaphore):
self .mutex.wait ()
self.counter += 1
if self.counter ==
semaphore.wait ()
self .mutex.signal()

def unlock(self, semaphore):
self .mutex.wait ()
self.counter —-= 1
if self.counter ==
semaphore.signal ()
self .mutex.signal ()
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multiplex
turnstile
rope
e_switch
w_switch

Semaphore(5)
Semaphore(1)
Semaphore (1)
Lightswitch()
Lightswitch()

while True:
# west side
turnstile.wait()
w_switch.lock(rope)
turnstile.signal()

multiplex.wait()
climbOnRope ()
crossChasm()
multiplex.signal()

w_switch.unlock(rope)

while True:
# east side
turnstile.wait()
e_switch.lock(rope)
turnstile.signal()

multiplex.wait()
climbOnRope ()
crossChasm()
multiplex.signal()

e_switch.unlock(rope)
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multiplex
turnstile
rope
mutex_east
mutex_west
east_count

Semaphore(5)
Semaphore (1)
Semaphore (1)
Semaphore(1)
Semaphore (1)
west_count = 0

# west side
turnstile.wait()
mutex_west.wait()
west_count++
if west_count ==
rope.wait()
mutex_west.signal()
turnstile.signal()

multiplex.wait()
# cross the chasm
multiplex.signal()

mutex_west.wait()
west_count--
if west_count ==
rope.signal()
mutex_west.signal()

# east side
turnstile.wait()
mutex_east.wait()
east_count++
if east_count ==
rope.wait()
mutex_east.signal()
turnstile.signal()

multiplex.wait()
# cross the chasm
multiplex.signal()

mutex_east.wait()
east_count--
if east_count ==
rope.signal()
mutex_east.si g‘%?;-’(lh College of Science
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... many, many more contrived problems
await you 1n the little book of
semaphores!
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