Concurrency, Races
& Synchronization

CS 450: Operating Systems
Michael Lee <lee@i1it.edu>

ﬁi’.’ IIT College of Science
/' \Linois iNsTiTUTE oF TeCHNOLOGY

Agenda

- Goncurrency: what, why, how
- Problems due to concurrency
- Locks & Locking strategies

- Goncurrent programming with
semaphores

ﬁ.{-‘,’ IIT College of Science

,/ ILLINOIS INSTITUTE OF TECHNOLOGY

SConcurrency: what,
why, how

ii’.’ IIT College of Science
/' \Linois iNsTiTUTE oF TeCHNOLOGY

concurrency (In computing) = two or
more overlapping threads of execution

thread [of execution| = a sequence of
mstructions and associated state

ﬁ.{-‘,’ IIT College of Science

,/ ILLINOIS INSTITUTE OF TECHNOLOGY

parallelism (enabled by > 1 physical GPUs)

1s one way of realizing concurrency

... but concurrency can also be achieved

via single-GPU multiplexing!

i,' IIT College of Science
/' \LLinois INSTITUTE OF TECHNOLOGY

--

ﬁ/' IIT College of Science

!/ ILLINOIS INSTITUTE OF TECHNOLOGY

even on multi-CGPU systems, GPU
multiplexing is performed to achieve /ugher
levels of concurrency (vs. hw parallelism)

ﬁ.{-‘,’ IIT College of Science

,/ ILLINOIS INSTITUTE OF TECHNOLOGY

why concurrency?
l. multitasking
2. separate blocking activities
3. 1mprove resource utilization

4. performance gains (most elusive!)

ﬁ.{-‘,’ IIT College of Science

,/ ILLINOIS INSTITUTE OF TECHNOLOGY

standard unit of concurrency: process

- single thread of execution “owns”
virtualized CGPU, memory

- (mostly) share-nothing architecture

ﬁ.{-‘,’ IIT College of Science

,/ ILLINOIS INSTITUTE OF TECHNOLOGY

int main() {
pid_t pid;
for (int i=0; 1i<5; 1i++) {
if ((pid = fork()) == 0) {
printf("Child %d says hello!\n", 1);

exit(0);
} else {
printf("Parent created child %d\n", pid);
}
b
return 0;

Child 0 says hello!
Parent created child
Parent created child
Child 1 says hello!
Parent created child

Parent created child
Child 3 says hello!
Child 2 says hello!
Child 4 says hello!
Parent created child

ﬁ/' IIT College of Science

!/ ILLINOIS INSTITUTE OF TECHNOLOGY

but single-thread model 1s inconvenient /
non-ideal 1n some situations

ﬁ.{-‘,’ IIT College of Science

,/ ILLINOIS INSTITUTE OF TECHNOLOGY

e.g., sequential operations that block on
unrelated resources

read_from_diskl(bufl); // block for input
read_from_disk2(buf2); // block for -dinput
read_from_network(buf3); // block for input
process_1input(bufl, buf2, buf3);

would like to mmitiate input from separate
blocking resources simultaneously

ﬁf:'.-' IIT College of Science

!/ ILLINOIS INSTITUTE OF TECHNOLOGY

e.g., interleaved, but independent

CPU & 1/0 operations

while (1) {
long_computation(); // CPU-intensive
update_log_file(); // blocks on I/0

}

would like to start next computation

while performing (blocking) log output

ﬁf:'.-' IIT College of Science

!/ ILLINOIS INSTITUTE OF TECHNOLOGY

e.g., Independent computations over

large data set (software SIMD)

int A[DIM][DIM], /* src matrix A */
B[DIM][DIM], /* src matrix B */
C[DIM][DIM]; /* dest matrix C */

/* C=A x B */ .
void matrix_mult () { eaCh Cell 11 resu1t

int i, j, k; s L
for (i=b 1eDIN; Ge4) 1 1s Independent
for (3205 3<DIM; j++) { need not serialize!
CLi1[] = o;

for (k=0; k<DIM; k++)
CLi10j] += A[i1[k] * B[KkI[]j];

ﬁf:'.-' IIT College of Science

!/ ILLINOIS INSTITUTE OF TECHNOLOGY

within xv6 kernel there 1s no inherent
process primitive — instead, implement
concurrency via multiple kernel stacks (and
program counters + other context)

ﬁ.{-‘,’ IIT College of Science

,/ ILLINOIS INSTITUTE OF TECHNOLOGY

1.e., multiple threads of execution,
one program

ﬁf:'.-' IIT College of Science

!/ ILLINOIS INSTITUTE OF TECHNOLOGY

Global (shared) 'T'hread-local

Code

"~

Data Stack Regs

- conlext
- | switch
\ 1 y

ﬁy/' IIT College of Science

ILLINOIS INSTITUTE OF TECHNOLOGY

xvb does not support multi-threads 1n user
processes, but most modern OSes do

- even 1f not supported by kernel, can
emulate multi-threading at user level

- same design: separate stacks & regs

- user implemented context switch

ﬁ.{-‘,’ IIT College of Science

,/ ILLINOIS INSTITUTE OF TECHNOLOGY

multithreading libraries & APIs allow us
to use threads without worrying about
implementation details

ﬁ.{-‘,’ IIT College of Science

,/ ILLINOIS INSTITUTE OF TECHNOLOGY

POSIX Threads (“pthreads”) 1s one API

for working with threads

- both kernel-level (aka natiwve) and user-
level (aka green) implementations exist

ii’.’ IIT College of Science
/' \Linois iNsTiTUTE oF TeCHNOLOGY

native threads provide kernel-level support
for parallelism, but also increase context
switch overhead (full-fledged interrupt)

ii’.’ IIT College of Science
/' \Linois iNsTiTUTE oF TeCHNOLOGY

/* thread creation */

int pthread_create (pthread_t *tid,
const pthread_attr_t *attr,
void *(*thread_fn) (void *),
void *arg);

/* wait for termination; thread '"reaping" */
int pthread_join (pthread_t tid,
void **result_ptr);

ﬁ/' IIT College of Science

!/ ILLINOIS INSTITUTE OF TECHNOLOGY

void *sayHello (void *num) {
printf("Hello from thread %ld\n", (long)num);
pthread_exit(NULL);

}

int main () {
pthread_t tid;
for (int i=0; 1i<5; i++){
pthread_create(&tid, NULL, sayHello, (void *)1i);
printf("Created thread %ld\n", (long)tid);

}
pthread_exit(NULL);
return 0;

Created thread 4558688256
Created thread 4559224832
Created thread 4559761408
Hello from thread 0

Created thread 4560297984

Hello from thread 1
Hello from thread 3
Created thread 4560834560
Hello from thread 4
Hello from thread 2

ﬁ/' IIT College of Science

!/ ILLINOIS INSTITUTE OF TECHNOLOGY

int A[DIM][DIM], /* src matrix A */
B[DIM] [DIM], /* src matrix B */
C[DIM][DIM]; /* dest matrix C */

/* C=A x B */
void matrix_mult () {
int i, j, k;
for (i=0; i<DIM; 1i++) {
for (j=0; j<DIM; j++) {
CLil[j] = 03
for (k=0; k<DIM; k++)

Cli103] += A[1]1[k] * B[KI[31;

Run time, with DIM=50, &k

user

500 1terations: BE

Oml.279s
Oml.260s
OmO.012s

\

y

.
13
N

= |IT College of Science
ILLINOIS INSTITUTE OF TECHNOLOGY

void run_with_thread_per_cell() {
pthread_t ptd[DIM][DIM];
int index[DIM][DIM][2];

for(int i = 0; i < DIM; 1 ++)
for(int j = 05 j < DIM; j ++) {
index[1][j1[0] = 1;
index[11[31[1] = i;
pthread_create(&ptd[i][j], NULL,
row_dot_col,
index[i1[j1);
}

for(i = 0; i < DIM; i ++)
for(j = 0; j < DIM; j ++)
pthread_join(ptd[i1[j], NULL);

Run time, with DIM=50,

500 1terations:

void row_dot_col(void *index) {
int *pindex = (int *)index;
int 1 = pindex[0];
int j = pindex[1];

Clil1[j] = 0;

for (int x=0; x<DIM; x++)

CLiJ[J] += A[T]IxI*BIx][j]1;

4ml18.013s

Om33.655s
4m31.936s

ﬁ/' IIT College of Science

!/ ILLINOIS INSTITUTE OF TECHNOLOGY

void run_with_n_threads(int num_threads) {
pthread_t tid[num_threads];
int tdatal[num_threads][2];
int n_per_thread = DIM/num_threads;

for (int i=0; 1i<num_threads; i++) {
tdatal[i][0] i*n_per_thread;
tdatal[i][1] (i < num_threads)

? ((i+l)*n_per_thread)-1

: DIM;
pthread_create(&tid[i], NULL,
compute_rows,
tdatal[i]);
+
for (int i=0; 1di<num_threads; i++)
pthread_join(tid[i], NULL);

void *compute_rows(void *arg) {
int *bounds = (int *)arg;
for (int i=bounds[0];
i<=bounds[1];

i++) {
for (int j=0; j<DIM; j++) {
CLiI[i] = o;

for (int k=0; k<DIM; k++)
CLi1[3] += A[i][k]
* BLkI[3];

ﬁf:'.-' IIT College of Science

!/ ILLINOIS INSTITUTE OF TECHNOLOGY

1.700

1.275

0.850

0.425

T s 4 5 6 7 8 9 10
Dual processor system, Num. threads
kernel threading, 1.700
DIM=50, 500 1iterations 1275
0.850
0.425
0.000

1 2 3 4 5 6 7 8 9 10
Num. threads

" Real [User M System

ﬁy/' IIT College of Science

ILLINOIS INSTITUTE OF TECHNOLOGY

but matrix multiplication happens to be
an embarrassingly parallelizable computation!

- not typical of concurrent tasks!

i/' IIT College of Science

,/ ILLINOIS INSTITUTE OF TECHNOLOGY

computations on shared data are typically
interdependent (and this 1sn’t always obvious!)

— may 1mpose a cap on parallelizeability

ﬁ.{-‘,’ IIT College of Science

,/ ILLINOIS INSTITUTE OF TECHNOLOGY

Amdhal’s law predicts max speedup given
twO parameters:

- P : fraction of program that’s parallelized

- N : # of execution cores

ﬁ.{-‘,’ IIT College of Science

,/ ILLINOIS INSTITUTE OF TECHNOLOGY

max speedup S =—
N

(1-P)

TP—>1;,5— N
I N—>oo;, §S— 1/(1- P)

ﬁ,//' IIT College of Science

IIIIIIIIIIIIIIIIIIIIIIIIIIIIII

Speedup

Amdahl’'s Law

20.00 —
P ‘
18.00 — |
/ Parallel Portion
16.00 7 50%
/ —75%
14.00 90%
/ ——95%
12.00 /
10.00 // —
/ —
8.00 //
6.00 //
4.00 / —
7 —
///__,_--
2.00 e . —
0.00
SEEENEREF- T R R T A
- o~ Ts) o o o - m ~ Tg]
— o~ <t [os) g ff;l’ 3

Number of Processors

source: http://en.wikipedia.org/wiki/File:Amdahlsl.aw.svg

\

y

= |IT College of Science
ILLINOIS INSTITUTE OF TECHNOLOGY

note: Amdahl’s law 1s based on a fixed

problem size (with fixed parallelized portion)

— but we can argue that as we have more
computing power we simply tend to throw
larger / more granular problem sets at 1t

i,' IIT College of Science
/' \LLinois INSTITUTE OF TECHNOLOGY

€.g.,

oraphics processing: keep turning up
resolution/detail

weather modeling: increase model
parameters/accuracy

chess/weiqi Al: deeper search tree

ﬁ.{-‘,’ IIT College of Science

,/ ILLINOIS INSTITUTE OF TECHNOLOGY

Gustatson & Barsis posit that

- we tend to scale problem size to
complete 1n the same amount of time,
regardless of the number of cores

- parallelizeable amount of work scales
linearly with number ot cores

ﬁ.{-‘,’ IIT College of Science

,/ ILLINOIS INSTITUTE OF TECHNOLOGY

Gustatson’s Law computes speedup
based on:

- N cores

- non-parallelized fraction, P

ﬁ.{-‘,’ IIT College of Science

,/ ILLINOIS INSTITUTE OF TECHNOLOGY

speedup S = N—- P - (N — 1)

- note that speedup 1s linear with respect
to number of cores!

ﬁ.{-‘,’ IIT College of Science

,/ ILLINOIS INSTITUTE OF TECHNOLOGY

Speedup: S

100

80

20

0

x-0.1*(x-1)
x-02%(x-1)
X -03*(x-
x-04#(x-1)
0.5 * (x-1)
x-0.6%(x-1)
x-0.7*(x-1
X - 0.8#7x-1)

=09 * (x-1) -

Number of cores: N

100

ﬁ”:’ IIT College of Science

y/ ILLINOIS INSTITUTE OF TECHNOLOGY

Amdahl’s vs. Gustafson’s:

- latter has rosier implications for big
data analysis / data science

- but not all datasets naturally
expand / increase in resolution

- both stress the import of maximizing
the parallelizeable fraction

i,' IIT College of Science
/' \LLinois INSTITUTE OF TECHNOLOGY

some of the primary challenges of
concurrent programming are to:

1. 1dentity thread interdependencies
2. identity (1)’s potential ramifications

3. ensure correctness

ﬁ.{-‘,’ IIT College of Science

,/ ILLINOIS INSTITUTE OF TECHNOLOGY

e.g., final change in count? (expected = 2)

Thread A Thread B

al count = count + 1 bl count = count + 1

interdependency: shared var count

ﬁ.{-‘,’ IIT College of Science

,/ ILLINOIS INSTITUTE OF TECHNOLOGY

factoring in machine-level granularity:

Thread A Thread B
al 1lw (count), %rO bl 1w (count), %rO
a2 add $1, %rO b2 add $1, %rO
ad sw %r0, (count) b3 sw Y%r0, (count)

answer: either +1 or +2!

ﬁ.{-‘,’ IIT College of Science

,/ ILLINOIS INSTITUTE OF TECHNOLOGY

race condition(s) exists when results
are dependent on the order of execution of
concurrent tasks

ﬁ.{-‘,’ IIT College of Science

,/ ILLINOIS INSTITUTE OF TECHNOLOGY

shared resource(s) are the problem

or, more specifically, concurrent mutability
of those shared resources

ﬁ.{-‘,’ IIT College of Science

,/ ILLINOIS INSTITUTE OF TECHNOLOGY

code that accesses
shared resource(s)

= cntical section

ﬁf:'.-' IIT College of Science

!/ ILLINOIS INSTITUTE OF TECHNOLOGY

synchronization:

time-sensitive coordination of critical
sections so as to avoid race conditions

ﬁ.{-‘,’ IIT College of Science

,/ ILLINOIS INSTITUTE OF TECHNOLOGY

e.g., specific ordening of different threads, or
mutually excluswe access to variables

ﬁ' IIT College of Science

,/ ILLINOIS INSTITUTE OF TECHNOLOGY

important: try to separate application logic
from synchronization details

- another 1nstance ot policy vs. mechanism

- this can be hard to get right!

ﬁ.{-‘,’ IIT College of Science

,/ ILLINOIS INSTITUTE OF TECHNOLOGY

most common technique for implementing
synchronization 1s via software “locks”

- explicitly required & released by
consumers of shared resources

ﬁ.{-‘,’ IIT College of Science

,/ ILLINOIS INSTITUTE OF TECHNOLOGY

SLocks & Locking
Strategies

ii’.’ IIT College of Science
/' \Linois iNsTiTUTE oF TeCHNOLOGY

basic 1dea:

- create a shared software construct that
has well defined concurrency semantics

- aka. a “thread-sate” object

- Use this object as a guard for another,
un-thread-sate shared resource

ﬁ.{-‘,’ IIT College of Science

,/ ILLINOIS INSTITUTE OF TECHNOLOGY

Thread A Thread B

al count = count + 1 bl count = count + 1

O
O
o
-
r'.

ﬁf:'.-' IIT College of Science

,/ ILLINOIS INSTITUTE OF TECHNOLOGY

Thread A Thread B

al count = count + 1 bl count = count + 1

O
O
o
-
r'.

ﬁf:'.-' IIT College of Science

,/ ILLINOIS INSTITUTE OF TECHNOLOGY

Thread A Thread B

al count = count + 1 bl count = count + 1

ﬁf:'.-' IIT College of Science

,/ ILLINOIS INSTITUTE OF TECHNOLOGY

Thread A Thread B

al count = count + 1 bl count = count + 1

O
O
o
-
r'.

?zon;

- - -y

ﬁf:'.-' IIT College of Science

,/ ILLINOIS INSTITUTE OF TECHNOLOGY

Thread A Thread B

al count = count + 1 bl count = count + 1

O
O
o
-
r'.

ﬁf:'.-' IIT College of Science

,/ ILLINOIS INSTITUTE OF TECHNOLOGY

locking can be:
- global (coarse-grained)

- per-resource (fine-grained)

ﬁ.{-‘,’ IIT College of Science

,/ ILLINOIS INSTITUTE OF TECHNOLOGY

coarse-grained locking policy

ﬁ/' IIT College of Science

,/ ILLINOIS INSTITUTE OF TECHNOLOGY

coarse-grained locking:
-1s (typically) easier to reason about
- results 1n a lot of lock contention

- could result 1n poor resource utilization —
may be impractical for this reason

ﬁ.{-‘,’ IIT College of Science

,/ ILLINOIS INSTITUTE OF TECHNOLOGY

fine-grained locking policy

ﬁ/' IIT College of Science

!/ ILLINOIS INSTITUTE OF TECHNOLOGY

fine-grained locking:
- may reduce (individual) lock contention
- may 1mprove resource utilization
- can result 1n a lot of locking overhead

- can be much harder to verity correctness!

ﬁ.{-‘,’ IIT College of Science

,/ ILLINOIS INSTITUTE OF TECHNOLOGY

so tar, have only considered mutual exclusion

what about 1nstances where we require a
specific order ot execution?

- often very difficult to achieve with
simple-minded locks

ﬁ.{-‘,’ IIT College of Science

,/ ILLINOIS INSTITUTE OF TECHNOLOGY

SAbstraction:
Semaphore

=

ﬁi’.’ IIT College of Science
/' \Linois iNsTiTUTE oF TeCHNOLOGY

®no The Little Book of Semaphores

[< | »] [o= I@ http://www.greenteapress.com/semaphores/ C] (Qv Google Q)
M

. f

Green The Little Book of |
Semaphores |

Tea |
Second Edition |

U

Press Allen B. Downey

Download the book in PDF now!

The Little Book of Semaphores is a free
(in both senses of the word) textbook
that introduces the principles of
synchronization for concurrent
programming.

In most computer science curricula,
synchronization is a module in an
Operating Systems class. OS textbooks
present a standard set of problems with

Green Tea Home Page a standard set of solutions, but most
students don't get a good
ggﬁmgNs understanding of the material or the
ACCEFPTED

ability to solve similar problems.

Z

Lattle Book of Semaphores

ﬁ/' IIT College of Science

!/ ILLINOIS INSTITUTE OF TECHNOLOGY

Semaphore rules:

1. When you create the semaphore, you can initialize its value to any integer,
but after that the only operations you are allowed to perform are increment
(increase by one) and decrement (decrease by one). You cannot read the
current value of the semaphore.

2. When a thread decrements the semaphore, if the result is negative, the
thread blocks itself and cannot continue until another thread increments
the semaphore.

3. When a thread increments the semaphore, if there are other threads wait-
ing, one of the waiting threads gets unblocked.

ﬁ/' IIT College of Science

!/ ILLINOIS INSTITUTE OF TECHNOLOGY

Initialization syntax:

1 fred = Semaphore(1)

ﬁf:'.-' IIT College of Science

,/ ILLINOIS INSTITUTE OF TECHNOLOGY

Operation names?

1 fred.increment_and_wake_a_waiting_process_if_any()

2 fred.decrement_and_block_if_the_result_is_negative()
1 fred.increment ()

2 fred.decrement ()

fred.signal ()

fred.wait ()

1 fred.V()
2 fred.P()

ﬁ.{-‘,’ IIT College of Science

,/ ILLINOIS INSTITUTE OF TECHNOLOGY

How to use semaphores for
synchronization?

1. Identify essential usage “patterns”

2. Solve “classic” synchronization
problems

ﬁ.{-‘,’ IIT College of Science

,/ ILLINOIS INSTITUTE OF TECHNOLOGY

Essential synchronization criteria:

1. avoid starvation

2. guarantee bounded waiting

3. no assumptions on relatwe speed (ot threads)

4. allow tor maximum concurrency

ﬁ.{-‘,’ IIT College of Science

,// ILLINOIS INSTITUTE OF TECHNOLOGY

Q Using Semaphores for

Synchronization

ii’.’ IIT College of Science
/' \Linois iNsTiTUTE oF TeCHNOLOGY

Basic patterns:
[. Rendezvous
II. Mutual exclusion (Mutex)
[11. Multiplex

IV. Generalized rendezvous / Barrier
& Turnstile

ii’.’ IIT College of Science
/' \Linois iNsTiTUTE oF TeCHNOLOGY

I. Rendezvous

Thread A Thread B
1 statement al 1 statement b1l
2 statement a2 2 statement b2

Guarantee: al < 02,51 < a2

ﬁ/' IIT College of Science

,/ ILLINOIS INSTITUTE OF TECHNOLOGY

aArrived = Semaphore(0)

bArrived = Semaphore (0)
Thread A Thread B
1 statement al 1 statement bl
2 aArrived.signal() 2 DbArrived.signal()
3 DbArrived.wait () 3 alArrived.wait ()
4 statement a2 4 statement b2

ﬁf:'.-' IIT College of Science

,/ ILLINOIS INSTITUTE OF TECHNOLOGY

Note: Swapping 2 & 3 — Deadlock!

Thread A Thread B
1 statement al 1 statement bl
2 DbArrived.wait() 2 aArrived.wait()
3 alArrived.signal() 3 DbArrived.signal()
4 statement a2 4 statement b2

ﬁf:'.-' IIT College of Science

,/ ILLINOIS INSTITUTE OF TECHNOLOGY

II. Mutual exclusion

Thread A Thread B

count = count + 1 count = count + 1

ﬁf:'.-' IIT College of Science

,/ ILLINOIS INSTITUTE OF TECHNOLOGY

mutex = Semaphore(1)

Thread A

mutex.wait ()
critical section
count = count + 1
mutex.signal ()

Thread B

mutex.wait ()
critical section
count = count + 1
mutex.signal ()

ﬁf:'.-' IIT College of Science

,/ ILLINOIS INSTITUTE OF TECHNOLOGY

III. multiplex = Semaphore(N)

I multiplex.wait()
2 critical section
3 multiplex.signal()

ﬁf:'.-' IIT College of Science

!/ ILLINOIS INSTITUTE OF TECHNOLOGY

IV. Generalized Rendezvous / Barrier

Puzzle: Generalize the rendezvous solution. Every thread should run the
following code:

Listing 3.2: Barrier code

1 rendezvous
2 critical point

ﬁf:'.-' IIT College of Science

,/ ILLINOIS INSTITUTE OF TECHNOLOGY

=0 DN

n = the number of threads
count = 0O

mutex = Semaphore (1)
barrier = Semaphore(0)

\

7

.
13
N

= |IT College of Science
ILLINOIS INSTITUTE OF TECHNOLOGY

© 00 ~J O T i W N+~

—_
N — O

rendezvous
mutex.wait ()

count = count + 1
mutex.signal ()

if count == n: barrier.signal()

barrier.wait ()
barrier.signal ()

critical point

\

L]
13
N

y

= IIT College of Science

ILLINOIS INSTITUTE OF TECHNOLOGY

rendezvous
mutex.wait ()
count = count + 1

mutex.signal ()

if count == n: turnstile.signal()

© 00 ~J O T i W N+~

turnstile.wait ()

10 turnstile.signal()
11
12 critical point

state of turnstile after all threads make 1t to 12?

= IIT College of Science

i
,/ ILLINOIS INSTITUTE OF TECHNOLOGY

rendezvous
mutex.wait ()

if count ==
mutex.signal ()

turnstile.wait ()
turnstile.signal ()

© 00 ~J O O i W b+

—_—
= O

critical point

count = count + 1

turnstile.signal ()

fix for non-determinism (but still oft by one)

= IIT College of Science

i
,/ ILLINOIS INSTITUTE OF TECHNOLOGY

next: would like a reusable barrier

need to re-lock turnstile

ﬁ.{-‘,’ IIT College of Science

,/ ILLINOIS INSTITUTE OF TECHNOLOGY

O ~J O O i W N

rendezvous

mutex.wait ()

count += 1

if count == n: turnstile.signal()
mutex.signal ()

turnstile.wait ()
turnstile.signal()

critical point

mutex.wait ()

count -= 1

if count == 0: turnstile.wait()
mutex.signal ()

(doesn’t work!)

= IIT College of Science

\
,/ ILLINOIS INSTITUTE OF TECHNOLOGY

turnstile = Semaphore(0)

2 turnstile2 = Semaphore(1)

3 mutex = Semaphore(1)

1 # rendezvous

2

3 mutex.wait ()

4 count += 1

5! if count == n:

6 turnstile2.wait () # lock the second
7 turnstile.signal() # unlock the first
8 mutex.signal()

9

10 turnstile.wait() # first turnstile
11 turnstile.signal()

12

13 # critical point

14

15 mutex.wait()

16 count -= 1

17 if count ==

18 turnstile.wait () # lock the first
19 turnstile2.signal() # unlock the second
20 mutex.signal()
21
22 turnstile2.wait() # second turnstile
23 turnstile2.signal()

of Science

ITE OF TECHNOLOGY

O© 00 O O i W N+~

T e T o T e T e S et S e G e G S R et
O© 0 JO Ui W N O

rendezvous

mutex.wait ()
count += 1
if count == n:
turnstile.signal (n) ‘# unlock the first
mutex.signal ()

turnstile.wait () # first turnstile
critical point
mutex.wait ()
count -= 1
if count == O:
turnstileQ.Signal(n)‘ # unlock the second

mutex.signal ()

turnstile2.wait () # second turnstile

ﬁ/' IIT College of Science

,/ ILLINOIS INSTITUTE OF TECHNOLOGY

next: classic synchronization problems

ﬁf:'.-' IIT College of Science

!/ ILLINOIS INSTITUTE OF TECHNOLOGY

I. Producer / Consumer

ﬁf:'.-' IIT College of Science

!/ ILLINOIS INSTITUTE OF TECHNOLOGY

Assume that producers perform the following operations over and over:

Listing 4.1: Basic producer code

1 event = waitForEvent ()
2 buffer.add(event)

Also, assume that consumers perform the following operations:

Listing 4.2: Basic consumer code

1 event = buffer.get()
2 event.process()

important: buffer is finite and non-thread-safe!

ﬁf:'.-' IIT College of Science

,/ ILLINOIS INSTITUTE OF TECHNOLOGY

- finite, non-thread-safe buffer

- 1 semaphore per item/space

I mutex = Semaphore(1)
2 items = Semaphore(0)
3 spaces = Semaphore(buffer.size())

ﬁf:'.-' IIT College of Science

!/ ILLINOIS INSTITUTE OF TECHNOLOGY

Listing 4.11: Finite buffer consumer solution

J O O & W DN =

items.wait ()
mutex.wait ()

event = buffer.get()
mutex.signal ()
spaces.signal ()

event.process ()

Listing 4.12: Finite buffer producer solution

J O T & W DN =

event = waitForEvent ()

spaces.wait ()
mutex.wait ()
buffer.add(event)
mutex.signal ()
items.signal ()

,/ ILLINOIS INSTITUTE OF TECHNOLOGY

ﬁ/' IIT College of Science

II. Readers/Writers

ﬁf:'.-' IIT College of Science

!/ ILLINOIS INSTITUTE OF TECHNOLOGY

categorical mutex

ﬁf:'.-' IIT College of Science

!/ ILLINOIS INSTITUTE OF TECHNOLOGY

Listing 4.13: Readers-writers initialization

1 int readers = 0
2 mutex = Semaphore(1)
3 roomEmpty = Semaphore(1)

ﬁ/' IIT College of Science

!/ ILLINOIS INSTITUTE OF TECHNOLOGY

Listing 4.14: Writers solution

I roomEmpty.wait ()
2 critical section for writers
3 roomEmpty.signal()

ﬁ/' IIT College of Science

!/ ILLINOIS INSTITUTE OF TECHNOLOGY

Listing 4.15: Readers solution

O© 00 ~J O O i W N~

—_
w N = O

mutex.wait ()
readers += 1
if readers
roomEmpty.wait ()
mutex.signal ()

first in locks

critical section for readers

mutex.wait ()
readers -= 1
if readers
roomEmpty.signal () # last out unlocks
mutex.signal ()

Vv

= |IT College of Science
ILLINOIS INSTITUTE OF TECHNOLOGY

— “lightswitch” pattern

ﬁf:'.-' IIT College of Science

!/ ILLINOIS INSTITUTE OF TECHNOLOGY

Listing 4.16: Lightswitch definition

© 00 O O = Wi+~

e e e
0O J O Ot i WO

class Lightswitch:

def

def

def

__init__(self):
self.counter = O
self .mutex = Semaphore(1)

lock(self, semaphore):
self .mutex.wait ()
self.counter += 1
1f self.counter ==
semaphore.wait ()
self .mutex.signal ()

unlock(self, semaphore) :
self .mutex.wait ()
self.counter -= 1
1f self.counter ==
semaphore.signal ()
self .mutex.signal()

= IIT College of Science

\
,/ ILLINOIS INSTITUTE OF TECHNOLOGY

Listing 4.17: Readers-writers initialization

1 readlLightswitch = Lightswitch()
2 roomEmpty = Semaphore(1)

readLightswitch is a shared Lightswitch object whose counter is initially
ZETO.

Listing 4.18: Readers-writers solution (reader)

1 readLightswitch.lock(roomEmpty)
2 # critical section
3 readlightswitch.unlock(roomEmpty)

ﬁ/' IIT College of Science

!/ ILLINOIS INSTITUTE OF TECHNOLOGY

recall criteria:
l.no starvation

2. bounded waiting

... but writer can starve!

ﬁ.{-‘,’ IIT College of Science

,/ ILLINOIS INSTITUTE OF TECHNOLOGY

need a mechanism for the writer to
prevent new readers from getting
“around” 1t (and 1nto the room)

1.e., “single-file” entry

ﬁ.{-‘,’ IIT College of Science

,/ ILLINOIS INSTITUTE OF TECHNOLOGY

Listing 4.19: No-starve readers-writers initialization

1 readSwitch = Lightswitch()
2 roomEmpty = Semaphore(1)
3 turnstile = Semaphore(1)

ﬁ/' IIT College of Science

!/ ILLINOIS INSTITUTE OF TECHNOLOGY

Listing 4.20: No-starve writer solution

1 turnstile.wait()
2 roomEmpty.wait ()
3 # critical section for writers
4 turnstile.signal()
D
6 roomEmpty.signal()
Listing 4.21: No-starve reader solution
1 turnstile.wait()
2 turnstile.signal()
3
4 readSwitch.lock(roomEmpty)
5! # critical section for readers
6 readSwitch.unlock(roomEmpty)

= |IT College of Science

NS
\,/ ILLINOIS INSTITUTE OF TECHNOLOGY

exercise for the reader: writer priority?

ﬁf:'.-' IIT College of Science

!/ ILLINOIS INSTITUTE OF TECHNOLOGY

bounded waiting?

- simple 1t we assume that threads blocking

On a sema;

bhore are queued (FIFO)

-1.e., threac

| blocking longest 1s woken next

- but semaphore semantics don’t require this

ﬁ.{-‘,’ IIT College of Science

,/ ILLINOIS INSTITUTE OF TECHNOLOGY

— FIFO queue pattern

ooal: use semaphores to build a thread-safe
FIFO wait queue

orven: non-thread-sate queue

ﬁ.{-‘,’ IIT College of Science

,/ ILLINOIS INSTITUTE OF TECHNOLOGY

approach:
- protect queue with shared mutex

- each thread enqueues 1ts own thread-
local semaphores and blocks on 1t

- to signal, dequeue & unblock a
semaphore

ﬁ.{-‘,’ IIT College of Science

,/ ILLINOIS INSTITUTE OF TECHNOLOGY

class FifoSem:
def __init__(self, val):
self.val = val # FifoSem’s semaphore value
self.mutex Semaphore(1) # possibly non-FIFO semaphore

self.queue = deque() # non-thread-safe queue
def wait(self):
barrier = Semaphore(0) # thread-local semaphore
block = False
self.mutex.wait() # modify val & queue in mutex

self.val -= 1
if self.val < O:
self.queue.append(barrier)
block = True
self.mutex.signal()
if block:
barrier.wait() # block outside mutex!

def signal(self):
self.mutex.wait() # modify val & queue 1in mutex
self.val += 1
if self.queue:
barrier = self.queue.popleft() # FIFO!
barrier.signal()
self.mutex.signal()

ﬁ.{-‘,’ IIT College of Science

,/ ILLINOIS INSTITUTE OF TECHNOLOGY

hencetorth, we will assume that all
semaphores have built-in FIFO semantics

ﬁ.{-‘,’ IIT College of Science

,/ ILLINOIS INSTITUTE OF TECHNOLOGY

[I1. “Dining Philosophers™ problem

ﬁy/' IIT College of Science

ILLINOIS INSTITUTE OF TECHNOLOGY

typical setup: protect shared resources with
semaphores

Listing 4.30: Variables for dining philosophers

1 forks = [Semaphore(l) for i in range(5)]

Listing 4.29: Which fork?

1 def left(i): return i
2 def right(i): return (i + 1) % 5

ﬁf:'.-' IIT College of Science

!/ ILLINOIS INSTITUTE OF TECHNOLOGY

solution requirements:
1. each fork held by one phil at a time
2.1n0o deadlock
3.1no philosopher may starve

4. max concurrency should be possible

ii’.’ IIT College of Science
/' \Linois iNsTiTUTE oF TeCHNOLOGY

Naive solution:

def get_forks(i):
fork[right(i)].wait ()
fork[left(i)].wait()

def put_forks(i):
fork[right(i)].signal()
fork[left(i)].signal()

J O O I W N =

possible deadlock!

ﬁf:'.-' IIT College of Science

!/ ILLINOIS INSTITUTE OF TECHNOLOGY

Solution 2: global mutex

def get_forks(i):
mutex.wait ()
fork[right(i)].wait ()
fork[left(i)].wait ()
mutex.signal ()

O i~ W N =

no starvation & max concurrency?

- may prohibit a philosopher from eating
when his forks are available

if:'.-' IIT College of Science

,/ ILLINOIS INSTITUTE OF TECHNOLOGY

Solution 3: imit # diners

footman = Semaphore(4)

def get_forks(i):
footman.wait ()
fork[right(i)].wait()
fork[left(i)].wait()

def put_forks(i):
fork[right(i)].signal()
fork[left(i)].signal()
footman.signal ()

O© 00 J O O i W N+

no starvation & max concurrency?

ﬁf:'.-' IIT College of Science

!/ ILLINOIS INSTITUTE OF TECHNOLOGY

Solution 4: leftie(s) vs. rightie(s)

1 def get_forks(i):
2 fork[right(i)].wait ()
3 fork[left(i)].wait()

vs. (at least one ot each)

1 def get_forks(i):
2 fork[left(i)].wait()
3 fork[right(i)].wait()

no starvation & max concurrency?

if:'.-' IIT College of Science

,/ ILLINOIS INSTITUTE OF TECHNOLOGY

Solution 4: Tanenbaum’s solution

state = ['thinking'] * 5

sem

= [Semaphore(0) for i in range(5)]

mutex = Semaphore(1)

def

def

def

get_fork(i):
mutex.wait ()

state[i] = 'hungry'

test (1) # check neighbors’ states
mutex.signal ()
sem[i] .wait () # wait on my own semaphore

put_fork(i):

mutex.wait ()
state[i] = 'thinking'
test (right(i)) # signal neighbors if they can eat
test(left(i))

mutex.signal()

test(1):
if statel[i] == 'hungry' \
and state[left(i)] != 'eating' \
and statel[right(i)] != 'eating':
state[i] = 'eating'
sem[i] .signal () # this signals me OR a neighbor

no

starvation & max CONCUTITREIHERs of scence

ILLIN

IS INSTITUTE OF TECHNOLOGY

ﬁ/' IIT College of Science

,/ ILLINOIS INSTITUTE OF TECHNOLOGY

ﬁ/' IIT College of Science

,/ ILLINOIS INSTITUTE OF TECHNOLOGY

ﬁ/' IIT College of Science

,/ ILLINOIS INSTITUTE OF TECHNOLOGY

ﬁ/' IIT College of Science

,/ ILLINOIS INSTITUTE OF TECHNOLOGY

ﬁ/' IIT College of Science

,/ ILLINOIS INSTITUTE OF TECHNOLOGY

ﬁ/' IIT College of Science

,/ ILLINOIS INSTITUTE OF TECHNOLOGY

ﬁ/' IIT College of Science

,/ ILLINOIS INSTITUTE OF TECHNOLOGY

ﬁ/' IIT College of Science

,/ ILLINOIS INSTITUTE OF TECHNOLOGY

ﬁ/' IIT College of Science

,/ ILLINOIS INSTITUTE OF TECHNOLOGY

ﬁ/' IIT College of Science

,/ ILLINOIS INSTITUTE OF TECHNOLOGY

ﬁ/' IIT College of Science

,/ ILLINOIS INSTITUTE OF TECHNOLOGY

ﬁ/' IIT College of Science

,/ ILLINOIS INSTITUTE OF TECHNOLOGY

ﬁ/' IIT College of Science

,/ ILLINOIS INSTITUTE OF TECHNOLOGY

ﬁ/' IIT College of Science

,/ ILLINOIS INSTITUTE OF TECHNOLOGY

ﬁ/' IIT College of Science

,/ ILLINOIS INSTITUTE OF TECHNOLOGY

ﬁ/' IIT College of Science

,/ ILLINOIS INSTITUTE OF TECHNOLOGY

ﬁ/' IIT College of Science

,/ ILLINOIS INSTITUTE OF TECHNOLOGY

ﬁ/' IIT College of Science

,/ ILLINOIS INSTITUTE OF TECHNOLOGY

ﬁ/' IIT College of Science

,/ ILLINOIS INSTITUTE OF TECHNOLOGY

(starves)

ﬁ/' IIT College of Science

,/ ILLINOIS INSTITUTE OF TECHNOLOGY

moral: synchronization problems are nsidious!

ﬁf:'.-' IIT College of Science

,/ ILLINOIS INSTITUTE OF TECHNOLOGY

[V. Dining Savages

THE SATURDAY EVENING POST

“Mugulu, how often have I told you not to play with your food?”’

ﬁ/' IIT College of Science

!/ ILLINOIS INSTITUTE OF TECHNOLOGY

A tribe of savages eats communal dinners from a large
pot that can hold M servings of stewed missionary. When a
savage wants to eat, he helps himselt from the pot, unless it
1s empty. If the pot 1s empty, the savage wakes up the cook
and then waits until the cook has refilled the pot.

Listing 5.1: Unsynchronized savage code

1 while True:
2 getServingFromPot ()
3 eat ()

And one cook thread runs this code:

Listing 5.2: Unsynchronized cook code

1 while True:
2 putServingsInPot (M)

ﬁf:'.-' IIT College of Science

!/ ILLINOIS INSTITUTE OF TECHNOLOGY

Listing 5.1: Unsynchronized savage code

1 while True:
2 getServingFromPot ()
3 eat ()

And one cook thread runs this code:

Listing 5.2: Unsynchronized cook code

1 while True:
2 putServingsInPot (M)

rules:
- savages cannot invoke getServingFromPot if

the pot 1s empty
- the cook can invoke putServingsInPot only

1f the pot 1s empty

ﬁ/' IIT College of Science

,/ ILLINOIS INSTITUTE OF TECHNOLOGY

hnt:

servings = 0

mutex = Semaphore(1)
emptyPot = Semaphore(0)
fullPot = Semaphore(0)

Listing 5.1: Unsynchronized savage code

1 while True:
2 getServingFromPot ()
3 eat ()

And one cook thread runs this code:

Listing 5.2: Unsynchronized cook code

1 while True:
2 putServingsInPot (M)

ﬁ/' IIT College of Science

!/ ILLINOIS INSTITUTE OF TECHNOLOGY

Listing 5.4: Dining Savages solution (cook)

=~ N

while True:
emptyPot.wait ()
putServingsInPot (M)
fullPot.signal()

Listing 5.5: Dining Savages solution (savage)

—_
_ O © 0 J O O W =

| —

while True:
mutex.wait ()
if servings ==
emptyPot.signal ()
fullPot.wait ()
servings = M
servings -= 1
getServingFromPot ()
mutex.signal ()

eat ()

= |IT College of Science

ILLINOIS INSTITUTE OF TECHNOLOGY

shared servings counter — scoreboard pattern

- arrtving threads check value of
scoreboard to determine system state

- note: scoreboard may consist of more
than one variable

ﬁ.{-‘,’ IIT College of Science

,/ ILLINOIS INSTITUTE OF TECHNOLOGY

V. Baboon Crossing

cast

ﬁy/' IIT College of Science

ILLINOIS INSTITUTE OF TECHNOLOGY

\

= |IT College of Science

j

ILLINOIS INSTITUTE OF TECHNOLOGY

O L L LR T L L LY |

ﬁ”:’ IIT College of Science

y/ ILLINOIS INSTITUTE OF TECHNOLOGY

gurantee rope mutex

ﬁy/' IIT College of Science

ILLINOIS INSTITUTE OF TECHNOLOGY

max ol b at a time

ﬁ”:’ IIT College of Science

y/ ILLINOIS INSTITUTE OF TECHNOLOGY

ﬁy/' IIT College of Science

ILLINOIS INSTITUTE OF TECHNOLOGY

solution consists of east&west baboon
threads:

I. categorical mutex
2. max of 5 on rope

3. no starvation

ﬁ.{-‘,’ IIT College of Science

,/ ILLINOIS INSTITUTE OF TECHNOLOGY

unsynchronized baboon code (identical for both sides)

1 while True:
2 climbOnRope ()
3 crossChasm()

hnt:

multiplex
turnstile
rope
e_switch
w_switch

Semaphore(5)
Semaphore(1)
Semaphore(1)
Lightswitch()
Lightswitch()

=
N

,:.-' IIT College of Science
/ ILLINOIS INSTITUTE OF TECHNOLOGY

Reminder: Lightswitch AD'T

0O O O = W N+

class Lightswitch:
def __init__(self):
self.counter = 0
self .mutex = Semaphore (1)

def lock(self, semaphore):
self .mutex.wait ()
self.counter += 1
if self.counter ==
semaphore.wait ()
self .mutex.signal()

def unlock(self, semaphore):
self .mutex.wait ()
self.counter —-= 1
if self.counter ==
semaphore.signal ()
self .mutex.signal ()

ﬁf:'.-' IIT College of Science

,/ ILLINOIS INSTITUTE OF TECHNOLOGY

multiplex
turnstile
rope
e_switch
w_switch

Semaphore(5)
Semaphore(1)
Semaphore (1)
Lightswitch()
Lightswitch()

while True:
west side
turnstile.wait()
w_switch.lock(rope)
turnstile.signal()

multiplex.wait()
climbOnRope ()
crossChasm()
multiplex.signal()

w_switch.unlock(rope)

while True:
east side
turnstile.wait()
e_switch.lock(rope)
turnstile.signal()

multiplex.wait()
climbOnRope ()
crossChasm()
multiplex.signal()

e_switch.unlock(rope)

ﬁf:'.-' IIT College of Science

!/ ILLINOIS INSTITUTE OF TECHNOLOGY

multiplex
turnstile
rope
mutex_east
mutex_west
east_count

Semaphore(5)
Semaphore (1)
Semaphore (1)
Semaphore(1)
Semaphore (1)
west_count = 0

west side
turnstile.wait()
mutex_west.wait()
west_count++
if west_count ==
rope.wait()
mutex_west.signal()
turnstile.signal()

multiplex.wait()
cross the chasm
multiplex.signal()

mutex_west.wait()
west_count--
if west_count ==
rope.signal()
mutex_west.signal()

east side
turnstile.wait()
mutex_east.wait()
east_count++
if east_count ==
rope.wait()
mutex_east.signal()
turnstile.signal()

multiplex.wait()
cross the chasm
multiplex.signal()

mutex_east.wait()
east_count--
if east_count ==
rope.signal()
mutex_east.si g‘%?;-’(lh College of Science

ILLINOIS INSTITUTE OF TECHNOLOGY

... many, many more contrived problems
await you 1n the little book of
semaphores!

ﬁ.{-‘,’ IIT College of Science

,/ ILLINOIS INSTITUTE OF TECHNOLOGY

