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§Concurrency: what, 
why, how
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concurrency (in computing) = two or  
	 more overlapping threads of  execution 
thread [of  execution] = a sequence of  	
instructions and associated state
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parallelism (enabled by > 1 physical CPUs) 
is one way of  realizing concurrency 

… but concurrency can also be achieved 
via single-CPU multiplexing!
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even on multi-CPU systems, CPU 
multiplexing is performed to achieve higher 
levels of  concurrency (vs. hw parallelism)
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why concurrency? 

1. multitasking 

2. separate blocking activities 

3. improve resource utilization 

4. performance gains (most elusive!)



Computer 
ScienceScience

standard unit of  concurrency: process 
- single thread of  execution “owns” 

virtualized CPU, memory 

- (mostly) share-nothing architecture
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int main() { 
    pid_t pid; 
    for (int i=0; i<5; i++) { 
        if ((pid = fork()) == 0) { 
            printf("Child %d says hello!\n", i); 
            exit(0); 
        } else { 
            printf("Parent created child %d\n", pid); 
        } 
    } 
    return 0; 
}

Child 0 says hello! 
Parent created child 7568 
Parent created child 7569 
Child 1 says hello! 
Parent created child 7570 
Parent created child 7571 
Child 3 says hello! 
Child 2 says hello! 
Child 4 says hello! 
Parent created child 7572
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but single-thread model is inconvenient / 
non-ideal in some situations
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e.g., sequential operations that block on 	
unrelated resources

read_from_disk1(buf1);   // block for input 
read_from_disk2(buf2);   // block for input 
read_from_network(buf3); // block for input 
process_input(buf1, buf2, buf3);

would like to initiate input from separate 
blocking resources simultaneously
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e.g., interleaved, but independent 
	 CPU & I/O operations

while (1) { 
    long_computation(); // CPU-intensive 
    update_log_file();  // blocks on I/O 
}

would like to start next computation  
while performing (blocking) log output
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e.g., independent computations over	
large data set (software SIMD)

int A[DIM][DIM], /* src matrix A */ 
    B[DIM][DIM], /* src matrix B */ 
    C[DIM][DIM]; /* dest matrix C */ 
!
/* C = A x B */ 
void matrix_mult () { 
    int i, j, k; 
    for (i=0; i<DIM; i++) { 
        for (j=0; j<DIM; j++) { 
            C[i][j] = 0; 
            for (k=0; k<DIM; k++) 
                C[i][j] += A[i][k] * B[k][j]; 
        } 
    } 
}

each cell in result 
is independent — 
need not serialize!
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within xv6 kernel there is no inherent 
process primitive — instead, implement 
concurrency via multiple kernel stacks (and 
program counters + other context)
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i.e., multiple threads of  execution,  
	 one program
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xv6 does not support multi-threads in user 
processes, but most modern OSes do 

- even if  not supported by kernel, can 
emulate multi-threading at user level 

- same design: separate stacks & regs 

- user implemented context switch
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multithreading libraries & APIs allow us 
to use threads without worrying about 
implementation details
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POSIX Threads (“pthreads”) is one API 
for working with threads 

- both kernel-level (aka native) and user-
level (aka green) implementations exist
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native threads provide kernel-level support 
for parallelism, but also increase context 
switch overhead (full-fledged interrupt)
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/* thread creation */ 
int pthread_create ( pthread_t *tid, 
                    const pthread_attr_t *attr, 
                    void *(*thread_fn)(void *), 
                    void *arg ); 
!
/* wait for termination; thread "reaping" */ 
int pthread_join ( pthread_t tid, 
                  void **result_ptr );
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void *sayHello (void *num) { 
    printf("Hello from thread %ld\n", (long)num); 
    pthread_exit(NULL); 
} 
!
int main () { 
    pthread_t tid; 
    for (int i=0; i<5; i++){ 
        pthread_create(&tid, NULL, sayHello, (void *)i); 
        printf("Created thread %ld\n", (long)tid); 
    } 
    pthread_exit(NULL); 
    return 0; 
}

Created thread 4558688256 
Created thread 4559224832 
Created thread 4559761408 
Hello from thread 0 
Created thread 4560297984 
Hello from thread 1 
Hello from thread 3 
Created thread 4560834560 
Hello from thread 4 
Hello from thread 2
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int A[DIM][DIM], /* src matrix A */ 
    B[DIM][DIM], /* src matrix B */ 
    C[DIM][DIM]; /* dest matrix C */ 
!
/* C = A x B */ 
void matrix_mult () { 
    int i, j, k; 
    for (i=0; i<DIM; i++) { 
        for (j=0; j<DIM; j++) { 
            C[i][j] = 0; 
            for (k=0; k<DIM; k++) 
                C[i][j] += A[i][k] * B[k][j]; 
        } 
    } 
}

Run time, with DIM=50, 
 500 iterations:

real    0m1.279s 
user    0m1.260s 
sys     0m0.012s
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void run_with_thread_per_cell() { 
    pthread_t ptd[DIM][DIM]; 
    int index[DIM][DIM][2]; 
     
    for(int i = 0; i < DIM; i ++) 
        for(int j = 0; j < DIM; j ++) { 
            index[i][j][0] = i; 
            index[i][j][1] = j; 
            pthread_create(&ptd[i][j], NULL, 
                           row_dot_col, 
                           index[i][j]); 
        } 
     
    for(i = 0; i < DIM; i ++) 
        for(j = 0; j < DIM; j ++) 
            pthread_join( ptd[i][j], NULL); 
}

void row_dot_col(void *index) { 
    int *pindex = (int *)index; 
    int i = pindex[0]; 
    int j = pindex[1]; 
     
    C[i][j] = 0; 
    for (int x=0; x<DIM; x++) 
        C[i][j] += A[i][x]*B[x][j]; 
} 

real    4m18.013s 
user    0m33.655s 
sys     4m31.936s

Run time, with DIM=50, 
 500 iterations:
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void run_with_n_threads(int num_threads) { 
    pthread_t tid[num_threads]; 
    int tdata[num_threads][2]; 
    int n_per_thread = DIM/num_threads; 
!
    for (int i=0; i<num_threads; i++) { 
        tdata[i][0] = i*n_per_thread;    
        tdata[i][1] = (i < num_threads) 
                      ? ((i+1)*n_per_thread)-1 
                      : DIM; 
        pthread_create(&tid[i], NULL, 
                       compute_rows, 
                       tdata[i]); 
    } 
    for (int i=0; i<num_threads; i++) 
        pthread_join(tid[i], NULL); 
}

void *compute_rows(void *arg) { 
    int *bounds = (int *)arg; 
    for (int i=bounds[0];  
         i<=bounds[1];  
         i++) { 
        for (int j=0; j<DIM; j++) { 
            C[i][j] = 0; 
            for (int k=0; k<DIM; k++) 
                C[i][j] += A[i][k]  
                           * B[k][j]; 
        } 
    } 
}
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but matrix multiplication happens to be 
an embarrassingly parallelizable computation! 

- not typical of  concurrent tasks!
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computations on shared data are typically 
interdependent (and this isn’t always obvious!) 

— may impose a cap on parallelizeability
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Amdhal’s law predicts max speedup given 
two parameters: 

- P : fraction of  program that’s parallelized 

- N : # of  execution cores
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1
P
N + (1� P )

† P → 1; S → N
‡ N → ∞; S → 1/(1 - P)

max speedup S = 
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source: http://en.wikipedia.org/wiki/File:AmdahlsLaw.svg 
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note: Amdahl’s law is based on a fixed 
problem size (with fixed parallelized portion) 

— but we can argue that as we have more 
computing power we simply tend to throw 
larger / more granular problem sets at it
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e.g., 

	 graphics processing: keep turning up 	
	 resolution/detail 

	 weather modeling: increase model 
	 	 parameters/accuracy 

	 chess/weiqi AI: deeper search tree
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Gustafson & Barsis posit that  

- we tend to scale problem size to 
complete in the same amount of  time, 
regardless of  the number of  cores 

- parallelizeable amount of  work scales 
linearly with number of  cores
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Gustafson’s Law computes speedup 
based on: 

- N cores 

- non-parallelized fraction, P
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speedup S = N – P ∙ (N – 1) 

- note that speedup is linear with respect 
to number of  cores!
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Amdahl’s vs. Gustafson’s:  

- latter has rosier implications for big 
data analysis / data science 

- but not all datasets naturally 
expand / increase in resolution 

- both stress the import of  maximizing 
the parallelizeable fraction
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some of  the primary challenges of  
concurrent programming are to: 

1. identify thread interdependencies 

2. identify (1)’s potential ramifications 

3. ensure correctness
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Thread A

a1  count = count + 1

Thread B

b1  count = count + 1

e.g., final change in count? (expected = 2)

interdependency: shared var count
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Thread A

a1  lw  (count), %r0 
a2  add $1, %r0 
a3  sw  %r0, (count)

Thread B

b1  lw  (count), %r0 
b2  add $1, %r0 
b3  sw  %r0, (count)

answer: either +1 or +2!

factoring in machine-level granularity:



Computer 
ScienceScience

race condition(s) exists when results  
are dependent on the order of  execution of  
concurrent tasks
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shared resource(s) are the problem 

or, more specifically, concurrent mutability  
of  those shared resources
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code that accesses  
shared resource(s) =   critical section
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synchronization: 
time-sensitive coordination of  critical 
sections so as to avoid race conditions
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e.g.,	specific ordering of  different threads, or  
	 mutually exclusive access to variables
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important: try to separate application logic 
from synchronization details 

- another instance of  policy vs. mechanism 

- this can be hard to get right!
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most common technique for implementing 
synchronization is via software “locks” 

- explicitly required & released by 
consumers of  shared resources
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§Locks & Locking 
Strategies
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basic idea:  

- create a shared software construct that 
has well defined concurrency semantics 

- aka. a “thread-safe” object 

- Use this object as a guard for another,  
un-thread-safe shared resource
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locking can be: 

- global (coarse-grained) 

- per-resource (fine-grained)
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coarse-grained locking: 

- is (typically) easier to reason about 

- results in a lot of  lock contention 

- could result in poor resource utilization — 
may be impractical for this reason
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fine-grained locking: 

- may reduce (individual) lock contention 

- may improve resource utilization 

- can result in a lot of  locking overhead 

- can be much harder to verify correctness!
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so far, have only considered mutual exclusion 

what about instances where we require a 
specific order of  execution? 

- often very difficult to achieve with 
simple-minded locks
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§Abstraction: 
Semaphore
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Little Book of  Semaphores
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Chapter 2

Semaphores

In real life a semaphore is a system of signals used to communicate visually,
usually with flags, lights, or some other mechanism. In software, a semaphore is
a data structure that is useful for solving a variety of synchronization problems.

Semaphores were invented by Edsger Dijkstra, a famously eccentric com-
puter scientist. Some of the details have changed since the original design, but
the basic idea is the same.

2.1 Definition

A semaphore is like an integer, with three differences:

1. When you create the semaphore, you can initialize its value to any integer,
but after that the only operations you are allowed to perform are increment
(increase by one) and decrement (decrease by one). You cannot read the
current value of the semaphore.

2. When a thread decrements the semaphore, if the result is negative, the
thread blocks itself and cannot continue until another thread increments
the semaphore.

3. When a thread increments the semaphore, if there are other threads wait-
ing, one of the waiting threads gets unblocked.

To say that a thread blocks itself (or simply “blocks”) is to say that it notifies
the scheduler that it cannot proceed. The scheduler will prevent the thread from
running until an event occurs that causes the thread to become unblocked. In
the tradition of mixed metaphors in computer science, unblocking is often called
“waking”.

That’s all there is to the definition, but there are some consequences of the
definition you might want to think about.

Semaphore rules:
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8 Semaphores

• In general, there is no way to know before a thread decrements a
semaphore whether it will block or not (in specific cases you might be
able to prove that it will or will not).

• After a thread increments a semaphore and another thread gets woken
up, both threads continue running concurrently. There is no way to know
which thread, if either, will continue immediately.

• When you signal a semaphore, you don’t necessarily know whether another
thread is waiting, so the number of unblocked threads may be zero or one.

Finally, you might want to think about what the value of the semaphore
means. If the value is positive, then it represents the number of threads that
can decrement without blocking. If it is negative, then it represents the number
of threads that have blocked and are waiting. If the value is zero, it means there
are no threads waiting, but if a thread tries to decrement, it will block.

2.2 Syntax

In most programming environments, an implementation of semaphores is avail-
able as part of the programming language or the operating system. Different
implementations sometimes offer slightly different capabilities, and usually re-
quire different syntax.

In this book I will use a simple pseudo-language to demonstrate how
semaphores work. The syntax for creating a new semaphore and initializing
it is

Listing 2.1: Semaphore initialization syntax

1 fred = Semaphore(1)

The function Semaphore is a constructor; it creates and returns a new
Semaphore. The initial value of the semaphore is passed as a parameter to
the constructor.

The semaphore operations go by different names in different environments.
The most common alternatives are

Listing 2.2: Semaphore operations

1 fred.increment()
2 fred.decrement()

and

Listing 2.3: Semaphore operations

1 fred.signal()
2 fred.wait()

and

Initialization syntax:
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2.3 Why semaphores? 9

Listing 2.4: Semaphore operations

1 fred.V()
2 fred.P()

It may be surprising that there are so many names, but there is a reason for the
plurality. increment and decrement describe what the operations do. signal
and wait describe what they are often used for. And V and P were the original
names proposed by Dijkstra, who wisely realized that a meaningless name is
better than a misleading name1.

I consider the other pairs misleading because increment and decrement
neglect to mention the possibility of blocking and waking, and semaphores are
often used in ways that have nothing to do with signal and wait.

If you insist on meaningful names, then I would suggest these:

Listing 2.5: Semaphore operations

1 fred.increment_and_wake_a_waiting_process_if_any()
2 fred.decrement_and_block_if_the_result_is_negative()

I don’t think the world is likely to embrace either of these names soon. In
the meantime, I choose (more or less arbitrarily) to use signal and wait.

2.3 Why semaphores?

Looking at the definition of semaphores, it is not at all obvious why they are use-
ful. It’s true that we don’t need semaphores to solve synchronization problems,
but there are some advantages to using them:

• Semaphores impose deliberate constraints that help programmers avoid
errors.

• Solutions using semaphores are often clean and organized, making it easy
to demonstrate their correctness.

• Semaphores can be implemented efficiently on many systems, so solutions
that use semaphores are portable and usually efficient.

1Actually, V and P aren’t completely meaningless to people who speak Dutch.
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Operation names?
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How to use semaphores for 
synchronization? 

1. Identify essential usage “patterns” 

2. Solve “classic” synchronization 
problems
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Essential synchronization criteria: 

1. avoid starvation 

2. guarantee bounded waiting 
3. no assumptions on relative speed (of  threads) 

4. allow for maximum concurrency
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§Using Semaphores for 
Synchronization
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Basic patterns: 

I. Rendezvous 

II. Mutual exclusion (Mutex) 

III.Multiplex 

IV. Generalized rendezvous / Barrier 
& Turnstile
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12 Basic synchronization patterns

This use of semaphores is the basis of the names signal and wait, and
in this case the names are conveniently mnemonic. Unfortunately, we will see
other cases where the names are less helpful.

Speaking of meaningful names, sem isn’t one. When possible, it is a good
idea to give a semaphore a name that indicates what it represents. In this case
a name like a1Done might be good, so that a1done.signal() means “signal
that a1 is done,” and a1done.wait() means “wait until a1 is done.”

3.2 Rendezvous

Puzzle: Generalize the signal pattern so that it works both ways. Thread A has
to wait for Thread B and vice versa. In other words, given this code

Thread A

1 statement a1
2 statement a2

Thread B

1 statement b1
2 statement b2

we want to guarantee that a1 happens before b2 and b1 happens before a2. In
writing your solution, be sure to specify the names and initial values of your
semaphores (little hint there).

Your solution should not enforce too many constraints. For example, we
don’t care about the order of a1 and b1. In your solution, either order should
be possible.

This synchronization problem has a name; it’s a rendezvous. The idea is
that two threads rendezvous at a point of execution, and neither is allowed to
proceed until both have arrived.

Guarantee: a1 < b2, b1 < a2

I. Rendezvous
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3.2 Rendezvous 15

3.2.2 Rendezvous solution

Here is my solution, based on the previous hint:

Thread A

1 statement a1
2 aArrived.signal()
3 bArrived.wait()
4 statement a2

Thread B

1 statement b1
2 bArrived.signal()
3 aArrived.wait()
4 statement b2

While working on the previous problem, you might have tried something like
this:

Thread A

1 statement a1
2 bArrived.wait()
3 aArrived.signal()
4 statement a2

Thread B

1 statement b1
2 bArrived.signal()
3 aArrived.wait()
4 statement b2

This solution also works, although it is probably less efficient, since it might
have to switch between A and B one time more than necessary.

If A arrives first, it waits for B. When B arrives, it wakes A and might
proceed immediately to its wait in which case it blocks, allowing A to reach its
signal, after which both threads can proceed.

Think about the other possible paths through this code and convince yourself
that in all cases neither thread can proceed until both have arrived.

3.2.3 Deadlock #1

Again, while working on the previous problem, you might have tried something
like this:

Thread A

1 statement a1
2 bArrived.wait()
3 aArrived.signal()
4 statement a2

Thread B

1 statement b1
2 aArrived.wait()
3 bArrived.signal()
4 statement b2

If so, I hope you rejected it quickly, because it has a serious problem. As-
suming that A arrives first, it will block at its wait. When B arrives, it will also
block, since A wasn’t able to signal aArrived. At this point, neither thread can
proceed, and never will.

This situation is called a deadlock and, obviously, it is not a successful
solution of the synchronization problem. In this case, the error is obvious, but
often the possibility of deadlock is more subtle. We will see more examples later.

aArrived = Semaphore(0) 
bArrived = Semaphore(0)
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3 aArrived.wait()
4 statement b2

While working on the previous problem, you might have tried something like
this:

Thread A

1 statement a1
2 bArrived.wait()
3 aArrived.signal()
4 statement a2

Thread B

1 statement b1
2 bArrived.signal()
3 aArrived.wait()
4 statement b2

This solution also works, although it is probably less efficient, since it might
have to switch between A and B one time more than necessary.

If A arrives first, it waits for B. When B arrives, it wakes A and might
proceed immediately to its wait in which case it blocks, allowing A to reach its
signal, after which both threads can proceed.

Think about the other possible paths through this code and convince yourself
that in all cases neither thread can proceed until both have arrived.

3.2.3 Deadlock #1

Again, while working on the previous problem, you might have tried something
like this:

Thread A

1 statement a1
2 bArrived.wait()
3 aArrived.signal()
4 statement a2

Thread B

1 statement b1
2 aArrived.wait()
3 bArrived.signal()
4 statement b2

If so, I hope you rejected it quickly, because it has a serious problem. As-
suming that A arrives first, it will block at its wait. When B arrives, it will also
block, since A wasn’t able to signal aArrived. At this point, neither thread can
proceed, and never will.

This situation is called a deadlock and, obviously, it is not a successful
solution of the synchronization problem. In this case, the error is obvious, but
often the possibility of deadlock is more subtle. We will see more examples later.

Note: Swapping 2 & 3 → Deadlock!
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3.3 Mutex

A second common use for semaphores is to enforce mutual exclusion. We have al-
ready seen one use for mutual exclusion, controlling concurrent access to shared
variables. The mutex guarantees that only one thread accesses the shared vari-
able at a time.

A mutex is like a token that passes from one thread to another, allowing one
thread at a time to proceed. For example, in The Lord of the Flies a group of
children use a conch as a mutex. In order to speak, you have to hold the conch.
As long as only one child holds the conch, only one can speak1.

Similarly, in order for a thread to access a shared variable, it has to “get”
the mutex; when it is done, it “releases” the mutex. Only one thread can hold
the mutex at a time.

Puzzle: Add semaphores to the following example to enforce mutual exclu-
sion to the shared variable count.

Thread A

count = count + 1

Thread B

count = count + 1

1Although this metaphor is helpful, for now, it can also be misleading, as you will see in
Section 5.5

II. Mutual exclusion
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3.3.2 Mutual exclusion solution

Here is a solution:
Thread A

mutex.wait()
# critical section
count = count + 1

mutex.signal()

Thread B

mutex.wait()
# critical section
count = count + 1

mutex.signal()

Since mutex is initially 1, whichever thread gets to the wait first will be able
to proceed immediately. Of course, the act of waiting on the semaphore has the
effect of decrementing it, so the second thread to arrive will have to wait until
the first signals.

I have indented the update operation to show that it is contained within the
mutex.

In this example, both threads are running the same code. This is sometimes
called a symmetric solution. If the threads have to run different code, the solu-
tion is asymmetric. Symmetric solutions are often easier to generalize. In this
case, the mutex solution can handle any number of concurrent threads without
modification. As long as every thread waits before performing an update and
signals after, then no two threads will access count concurrently.

Often the code that needs to be protected is called the critical section, I
suppose because it is critically important to prevent concurrent access.

In the tradition of computer science and mixed metaphors, there are several
other ways people sometimes talk about mutexes. In the metaphor we have been
using so far, the mutex is a token that is passed from one thread to another.

In an alternative metaphor, we think of the critical section as a room, and
only one thread is allowed to be in the room at a time. In this metaphor,
mutexes are called locks, and a thread is said to lock the mutex before entering
and unlock it while exiting. Occasionally, though, people mix the metaphors
and talk about “getting” or “releasing” a lock, which doesn’t make much sense.

Both metaphors are potentially useful and potentially misleading. As you
work on the next problem, try out both ways of thinking and see which one
leads you to a solution.

3.4 Multiplex

Puzzle: Generalize the previous solution so that it allows multiple threads to
run in the critical section at the same time, but it enforces an upper limit on
the number of concurrent threads. In other words, no more than n threads can
run in the critical section at the same time.

This pattern is called a multiplex. In real life, the multiplex problem occurs
at busy nightclubs where there is a maximum number of people allowed in the
building at a time, either to maintain fire safety or to create the illusion of
exclusivity.

mutex = Semaphore(1)
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3.4.1 Multiplex solution

To allow multiple threads to run in the critical section, just initialize the
semaphore to n, which is the maximum number of threads that should be al-
lowed.

At any time, the value of the semaphore represents the number of additional
threads that may enter. If the value is zero, then the next thread will block
until one of the threads inside exits and signals. When all threads have exited
the value of the semaphore is restored to n.

Since the solution is symmetric, it’s conventional to show only one copy of the
code, but you should imagine multiple copies of the code running concurrently
in multiple threads.

Listing 3.1: Multiplex solution

1 multiplex.wait()
2 critical section
3 multiplex.signal()

What happens if the critical section is occupied and more than one thread
arrives? Of course, what we want is for all the arrivals to wait. This solution
does exactly that. Each time an arrival joins the queue, the semaphore is decre-
mented, so that the value of the semaphore (negated) represents the number of
threads in queue.

When a thread leaves, it signals the semaphore, incrementing its value and
allowing one of the waiting threads to proceed.

Thinking again of metaphors, in this case I find it useful to think of the
semaphore as a set of tokens (rather than a lock). As each thread invokes wait,
it picks up one of the tokens; when it invokes signal it releases one. Only a
thread that holds a token can enter the room. If no tokens are available when
a thread arrives, it waits until another thread releases one.

In real life, ticket windows sometimes use a system like this. They hand
out tokens (sometimes poker chips) to customers in line. Each token allows the
holder to buy a ticket.

3.5 Barrier

Consider again the Rendezvous problem from Section 3.2. A limitation of the
solution we presented is that it does not work with more than two threads.

Puzzle: Generalize the rendezvous solution. Every thread should run the
following code:

Listing 3.2: Barrier code

1 rendezvous
2 critical point

III. multiplex = Semaphore(N)
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3.4.1 Multiplex solution

To allow multiple threads to run in the critical section, just initialize the
semaphore to n, which is the maximum number of threads that should be al-
lowed.

At any time, the value of the semaphore represents the number of additional
threads that may enter. If the value is zero, then the next thread will block
until one of the threads inside exits and signals. When all threads have exited
the value of the semaphore is restored to n.

Since the solution is symmetric, it’s conventional to show only one copy of the
code, but you should imagine multiple copies of the code running concurrently
in multiple threads.

Listing 3.1: Multiplex solution

1 multiplex.wait()
2 critical section
3 multiplex.signal()

What happens if the critical section is occupied and more than one thread
arrives? Of course, what we want is for all the arrivals to wait. This solution
does exactly that. Each time an arrival joins the queue, the semaphore is decre-
mented, so that the value of the semaphore (negated) represents the number of
threads in queue.

When a thread leaves, it signals the semaphore, incrementing its value and
allowing one of the waiting threads to proceed.

Thinking again of metaphors, in this case I find it useful to think of the
semaphore as a set of tokens (rather than a lock). As each thread invokes wait,
it picks up one of the tokens; when it invokes signal it releases one. Only a
thread that holds a token can enter the room. If no tokens are available when
a thread arrives, it waits until another thread releases one.

In real life, ticket windows sometimes use a system like this. They hand
out tokens (sometimes poker chips) to customers in line. Each token allows the
holder to buy a ticket.

3.5 Barrier

Consider again the Rendezvous problem from Section 3.2. A limitation of the
solution we presented is that it does not work with more than two threads.

Puzzle: Generalize the rendezvous solution. Every thread should run the
following code:

Listing 3.2: Barrier code

1 rendezvous
2 critical point

IV. Generalized Rendezvous / Barrier
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3.5.1 Barrier hint

For many of the problems in this book I will provide hints by presenting the
variables I used in my solution and explaining their roles.

Listing 3.3: Barrier hint

1 n = the number of threads
2 count = 0
3 mutex = Semaphore(1)
4 barrier = Semaphore(0)

count keeps track of how many threads have arrived. mutex provides exclu-
sive access to count so that threads can increment it safely.

barrier is locked (zero or negative) until all threads arrive; then it should
be unlocked (1 or more).
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  1 rendezvous      
  2       
  3 mutex.wait()      
  4     count = count + 1      
  5 mutex.signal()          
  6       
  7 if count == n: barrier.signal()      
  8       
  9 barrier.wait()      
  10 barrier.signal()     
  11      
  12 critical point    
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  1 rendezvous      
  2       
  3 mutex.wait()      
  4     count = count + 1      
  5 mutex.signal()          
  6       
  7 if count == n: turnstile.signal()      
  8       
  9 turnstile.wait()      
  10 turnstile.signal()     
  11      
  12 critical point    

state of  turnstile after all threads make it to 12?
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  1 rendezvous      
  2       
  3 mutex.wait()      
  4     count = count + 1      
  5     if count == n: turnstile.signal()      
  6 mutex.signal()      
  7       
  8 turnstile.wait()      
  9 turnstile.signal()      
  10      
  11 critical point    

fix for non-determinism (but still off  by one)
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next: would like a reusable barrier 

need to re-lock turnstile
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3.6.3 Reusable barrier non-solution #2

This attempt fixes the previous error, but a subtle problem remains.

Listing 3.8: Reusable barrier non-solution

1 rendezvous
2
3 mutex.wait()
4 count += 1
5 if count == n: turnstile.signal()
6 mutex.signal()
7
8 turnstile.wait()
9 turnstile.signal()

10
11 critical point
12
13 mutex.wait()
14 count -= 1
15 if count == 0: turnstile.wait()
16 mutex.signal()

In both cases the check is inside the mutex so that a thread cannot be
interrupted after changing the counter and before checking it.

Tragically, this code is still not correct. Remember that this barrier will be
inside a loop. So, after executing the last line, each thread will go back to the
rendezvous.

Puzzle: Identify and fix the problem.

(doesn’t work!)
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3.6.5 Reusable barrier solution

Listing 3.10: Reusable barrier solution

1 # rendezvous
2
3 mutex.wait()
4 count += 1
5 if count == n:
6 turnstile2.wait() # lock the second
7 turnstile.signal() # unlock the first
8 mutex.signal()
9

10 turnstile.wait() # first turnstile
11 turnstile.signal()
12
13 # critical point
14
15 mutex.wait()
16 count -= 1
17 if count == 0:
18 turnstile.wait() # lock the first
19 turnstile2.signal() # unlock the second
20 mutex.signal()
21
22 turnstile2.wait() # second turnstile
23 turnstile2.signal()

This solution is sometimes called a two-phase barrier because it forces all
the threads to wait twice: once for all the threads to arrive and again for all the
threads to execute the critical section.

Unfortunately, this solution is typical of most non-trivial synchronization
code: it is difficult to be sure that a solution is correct. Often there is a subtle
way that a particular path through the program can cause an error.

To make matters worse, testing an implementation of a solution is not much
help. The error might occur very rarely because the particular path that causes
it might require a spectacularly unlucky combination of circumstances. Such
errors are almost impossible to reproduce and debug by conventional means.

The only alternative is to examine the code carefully and “prove” that it is
correct. I put “prove” in quotation marks because I don’t mean, necessarily,
that you have to write a formal proof (although there are zealots who encourage
such lunacy).

The kind of proof I have in mind is more informal. We can take advantage
of the structure of the code, and the idioms we have developed, to assert, and
then demonstrate, a number of intermediate-level claims about the program.
For example:
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3.6.4 Reusable barrier hint

As it is currently written, this code allows a precocious thread to pass through
the second mutex, then loop around and pass through the first mutex and the
turnstile, effectively getting ahead of the other threads by a lap.

To solve this problem we can use two turnstiles.

Listing 3.9: Reusable barrier hint

1 turnstile = Semaphore(0)
2 turnstile2 = Semaphore(1)
3 mutex = Semaphore(1)

Initially the first is locked and the second is open. When all the threads
arrive at the first, we lock the second and unlock the first. When all the threads
arrive at the second we relock the first, which makes it safe for the threads to
loop around to the beginning, and then open the second.
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3.6.6 Preloaded turnstile

One nice thing about a turnstile is that it is a versatile component you can
use in a variety of solutions. But one drawback is that it forces threads to go
through sequentially, which may cause more context switching than necessary.

In the reusable barrier solution, we can simplify the solution if the thread
that unlocks the turnstile preloads the turnstile with enough signals to let the
right number of threads through2.

The syntax I am using here assumes that signal can take a parameter
that specifies the number of signals. This is a non-standard feature, but it
would be easy to implement with a loop. The only thing to keep in mind is
that the multiple signals are not atomic; that is, the signaling thread might be
interrupted in the loop. But in this case that is not a problem.

Listing 3.11: Reusable barrier solution

1 # rendezvous
2
3 mutex.wait()
4 count += 1
5 if count == n:
6 turnstile.signal(n) # unlock the first
7 mutex.signal()
8
9 turnstile.wait() # first turnstile

10
11 # critical point
12
13 mutex.wait()
14 count -= 1
15 if count == 0:
16 turnstile2.signal(n) # unlock the second
17 mutex.signal()
18
19 turnstile2.wait() # second turnstile

When the nth thread arrives, it preloads the first turnstile with one signal
for each thread. When the nth thread passes the turnstile, it “takes the last
token” and leaves the turnstile locked again.

The same thing happens at the second turnstile, which is unlocked when the
last thread goes through the mutex.

2Thanks to Matt Tesch for this solution!
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• While an item is being added to or removed from the buffer, the buffer is
in an inconsistent state. Therefore, threads must have exclusive access to
the buffer.

• If a consumer thread arrives while the buffer is empty, it blocks until a
producer adds a new item.

Assume that producers perform the following operations over and over:

Listing 4.1: Basic producer code

1 event = waitForEvent()
2 buffer.add(event)

Also, assume that consumers perform the following operations:

Listing 4.2: Basic consumer code

1 event = buffer.get()
2 event.process()

As specified above, access to the buffer has to be exclusive, but
waitForEvent and event.process can run concurrently.

Puzzle: Add synchronization statements to the producer and consumer code
to enforce the synchronization constraints.

important: buffer is finite and non-thread-safe!
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- finite, non-thread-safe buffer 

- 1 semaphore per item/space

4.1 Producer-consumer problem 69

4.1.5 Finite buffer producer-consumer hint

Add a second semaphore to keep track of the number of available spaces in the
buffer.

Listing 4.10: Finite-buffer producer-consumer initialization

1 mutex = Semaphore(1)
2 items = Semaphore(0)
3 spaces = Semaphore(buffer.size())

When a consumer removes an item it should signal spaces. When a producer
arrives it should decrement spaces, at which point it might block until the next
consumer signals.
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4.1.6 Finite buffer producer-consumer solution

Here is a solution.

Listing 4.11: Finite buffer consumer solution

1 items.wait()
2 mutex.wait()
3 event = buffer.get()
4 mutex.signal()
5 spaces.signal()
6
7 event.process()

The producer code is symmetric, in a way:

Listing 4.12: Finite buffer producer solution

1 event = waitForEvent()
2
3 spaces.wait()
4 mutex.wait()
5 buffer.add(event)
6 mutex.signal()
7 items.signal()

In order to avoid deadlock, producers and consumers check availability be-
fore getting the mutex. For best performance, they release the mutex before
signaling.

4.2 Readers-writers problem

The next classical problem, called the Reader-Writer Problem, pertains to any
situation where a data structure, database, or file system is read and modified
by concurrent threads. While the data structure is being written or modified
it is often necessary to bar other threads from reading, in order to prevent a
reader from interrupting a modification in progress and reading inconsistent or
invalid data.

As in the producer-consumer problem, the solution is asymmetric. Readers
and writers execute different code before entering the critical section. The
synchronization constraints are:

1. Any number of readers can be in the critical section simultaneously.

2. Writers must have exclusive access to the critical section.

In other words, a writer cannot enter the critical section while any other
thread (reader or writer) is there, and while the writer is there, no other thread
may enter.
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1. Any number of readers can be in the critical section simultaneously.

2. Writers must have exclusive access to the critical section.
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4.2.1 Readers-writers hint

Here is a set of variables that is sufficient to solve the problem.

Listing 4.13: Readers-writers initialization

1 int readers = 0
2 mutex = Semaphore(1)
3 roomEmpty = Semaphore(1)

The counter readers keeps track of how many readers are in the room.
mutex protects the shared counter.

roomEmpty is 1 if there are no threads (readers or writers) in the critical
section, and 0 otherwise. This demonstrates the naming convention I use for
semaphores that indicate a condition. In this convention, “wait” usually means
“wait for the condition to be true” and “signal” means “signal that the condition
is true”.
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4.2.2 Readers-writers solution

The code for writers is simple. If the critical section is empty, a writer may
enter, but entering has the effect of excluding all other threads:

Listing 4.14: Writers solution

1 roomEmpty.wait()
2 critical section for writers
3 roomEmpty.signal()

When the writer exits, can it be sure that the room is now empty? Yes,
because it knows that no other thread can have entered while it was there.

The code for readers is similar to the barrier code we saw in the previous
section. We keep track of the number of readers in the room so that we can
give a special assignment to the first to arrive and the last to leave.

The first reader that arrives has to wait for roomEmpty. If the room is empty,
then the reader proceeds and, at the same time, bars writers. Subsequent readers
can still enter because none of them will try to wait on roomEmpty.

If a reader arrives while there is a writer in the room, it waits on roomEmpty.
Since it holds the mutex, any subsequent readers queue on mutex.

Listing 4.15: Readers solution

1 mutex.wait()
2 readers += 1
3 if readers == 1:
4 roomEmpty.wait() # first in locks
5 mutex.signal()
6
7 # critical section for readers
8
9 mutex.wait()

10 readers -= 1
11 if readers == 0:
12 roomEmpty.signal() # last out unlocks
13 mutex.signal()

The code after the critical section is similar. The last reader to leave the
room turns out the lights—that is, it signals roomEmpty, possibly allowing a
waiting writer to enter.

Again, to demonstrate that this code is correct, it is useful to assert and
demonstrate a number of claims about how the program must behave. Can you
convince yourself that the following are true?

• Only one reader can queue waiting for roomEmpty, but several writers
might be queued.

• When a reader signals roomEmpty the room must be empty.
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4.2.2 Readers-writers solution

The code for writers is simple. If the critical section is empty, a writer may
enter, but entering has the effect of excluding all other threads:

Listing 4.14: Writers solution

1 roomEmpty.wait()
2 critical section for writers
3 roomEmpty.signal()

When the writer exits, can it be sure that the room is now empty? Yes,
because it knows that no other thread can have entered while it was there.

The code for readers is similar to the barrier code we saw in the previous
section. We keep track of the number of readers in the room so that we can
give a special assignment to the first to arrive and the last to leave.

The first reader that arrives has to wait for roomEmpty. If the room is empty,
then the reader proceeds and, at the same time, bars writers. Subsequent readers
can still enter because none of them will try to wait on roomEmpty.

If a reader arrives while there is a writer in the room, it waits on roomEmpty.
Since it holds the mutex, any subsequent readers queue on mutex.

Listing 4.15: Readers solution

1 mutex.wait()
2 readers += 1
3 if readers == 1:
4 roomEmpty.wait() # first in locks
5 mutex.signal()
6
7 # critical section for readers
8
9 mutex.wait()

10 readers -= 1
11 if readers == 0:
12 roomEmpty.signal() # last out unlocks
13 mutex.signal()

The code after the critical section is similar. The last reader to leave the
room turns out the lights—that is, it signals roomEmpty, possibly allowing a
waiting writer to enter.

Again, to demonstrate that this code is correct, it is useful to assert and
demonstrate a number of claims about how the program must behave. Can you
convince yourself that the following are true?

• Only one reader can queue waiting for roomEmpty, but several writers
might be queued.

• When a reader signals roomEmpty the room must be empty.
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Patterns similar to this reader code are common: the first thread into a
section locks a semaphore (or queues) and the last one out unlocks it. In fact,
it is so common we should give it a name and wrap it up in an object.

The name of the pattern is Lightswitch, by analogy with the pattern where
the first person into a room turns on the light (locks the mutex) and the last one
out turns it off (unlocks the mutex). Here is a class definition for a Lightswitch:

Listing 4.16: Lightswitch definition

1 class Lightswitch:
2 def __init__(self):
3 self.counter = 0
4 self.mutex = Semaphore(1)
5
6 def lock(self, semaphore):
7 self.mutex.wait()
8 self.counter += 1
9 if self.counter == 1:

10 semaphore.wait()
11 self.mutex.signal()
12
13 def unlock(self, semaphore):
14 self.mutex.wait()
15 self.counter -= 1
16 if self.counter == 0:
17 semaphore.signal()
18 self.mutex.signal()

lock takes one parameter, a semaphore that it will check and possibly hold.
If the semaphore is locked, the calling thread blocks on semaphore and all
subsequent threads block on self.mutex. When the semaphore is unlocked,
the first waiting thread locks it again and all waiting threads proceed.

If the semaphore is initially unlocked, the first thread locks it and all subse-
quent threads proceed.

unlock has no effect until every thread that called lock also calls unlock.
When the last thread calls unlock, it unlocks the semaphore.
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Using these functions, we can rewrite the reader code more simply:

Listing 4.17: Readers-writers initialization

1 readLightswitch = Lightswitch()
2 roomEmpty = Semaphore(1)

readLightswitch is a shared Lightswitch object whose counter is initially
zero.

Listing 4.18: Readers-writers solution (reader)

1 readLightswitch.lock(roomEmpty)
2 # critical section
3 readLightswitch.unlock(roomEmpty)

The code for writers is unchanged.
It would also be possible to store a reference to roomEmpty as an attribute of

the Lightswitch, rather than pass it as a parameter to lock and unlock. This
alternative would be less error-prone, but I think it improves readability if each
invocation of lock and unlocks specifies the semaphore it operates on.

4.2.3 Starvation

In the previous solution, is there any danger of deadlock? In order for a deadlock
to occur, it must be possible for a thread to wait on a semaphore while holding
another, and thereby prevent itself from being signaled.

In this example, deadlock is not possible, but there is a related problem that
is almost as bad: it is possible for a writer to starve.

If a writer arrives while there are readers in the critical section, it might wait
in queue forever while readers come and go. As long as a new reader arrives
before the last of the current readers departs, there will always be at least one
reader in the room.

This situation is not a deadlock, because some threads are making progress,
but it is not exactly desirable. A program like this might work as long as the
load on the system is low, because then there are plenty of opportunities for the
writers. But as the load increases the behavior of the system would deteriorate
quickly (at least from the point of view of writers).

Puzzle: Extend this solution so that when a writer arrives, the existing
readers can finish, but no additional readers may enter.
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recall criteria: 

1. no starvation 

2. bounded waiting 

… but writer can starve!
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need a mechanism for the writer to 
prevent new readers from getting 
“around” it (and into the room) 

i.e., “single-file” entry
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4.2.4 No-starve readers-writers hint

Here’s a hint. You can add a turnstile for the readers and allow writers to lock it.
The writers have to pass through the same turnstile, but they should check the
roomEmpty semaphore while they are inside the turnstile. If a writer gets stuck
in the turnstile it has the effect of forcing the readers to queue at the turnstile.
Then when the last reader leaves the critical section, we are guaranteed that at
least one writer enters next (before any of the queued readers can proceed).

Listing 4.19: No-starve readers-writers initialization

1 readSwitch = Lightswitch()
2 roomEmpty = Semaphore(1)
3 turnstile = Semaphore(1)

readSwitch keeps track of how many readers are in the room; it locks
roomEmpty when the first reader enters and unlocks it when the last reader
exits.

turnstile is a turnstile for readers and a mutex for writers.
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4.2.5 No-starve readers-writers solution

Here is the writer code:

Listing 4.20: No-starve writer solution

1 turnstile.wait()
2 roomEmpty.wait()
3 # critical section for writers
4 turnstile.signal()
5
6 roomEmpty.signal()

If a writer arrives while there are readers in the room, it will block at Line 2,
which means that the turnstile will be locked. This will bar readers from entering
while a writer is queued. Here is the reader code:

Listing 4.21: No-starve reader solution

1 turnstile.wait()
2 turnstile.signal()
3
4 readSwitch.lock(roomEmpty)
5 # critical section for readers
6 readSwitch.unlock(roomEmpty)

When the last reader leaves, it signals roomEmpty, unblocking the waiting
writer. The writer immediately enters its critical section, since none of the
waiting readers can pass the turnstile.

When the writer exits it signals turnstile, which unblocks a waiting thread,
which could be a reader or a writer. Thus, this solution guarantees that at least
one writer gets to proceed, but it is still possible for a reader to enter while
there are writers queued.

Depending on the application, it might be a good idea to give more priority
to writers. For example, if writers are making time-critical updates to a data
structure, it is best to minimize the number of readers that see the old data
before the writer has a chance to proceed.

In general, though, it is up to the scheduler, not the programmer, to choose
which waiting thread to unblock. Some schedulers use a first-in-first-out queue,
which means that threads are unblocked in the same order they queued. Other
schedulers choose at random, or according to a priority scheme based on the
properties of the waiting threads.

If your programming environment makes it possible to give some threads
priority over others, then that is a simple way to address this issue. If not, you
will have to find another way.

Puzzle: Write a solution to the readers-writers problem that gives priority
to writers. That is, once a writer arrives, no readers should be allowed to enter
until all writers have left the system.
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exercise for the reader: writer priority?
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bounded waiting? 

- simple if  we assume that threads blocking 
on a semaphore are queued (FIFO) 

- i.e., thread blocking longest is woken next 

- but semaphore semantics don’t require this
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→ FIFO queue pattern 

goal:	use semaphores to build a thread-safe  
	 FIFO wait queue 

given: non-thread-safe queue
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approach: 

- protect queue with shared mutex 

- each thread enqueues its own thread-
local semaphores and blocks on it 

- to signal, dequeue & unblock a 
semaphore
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    def signal(self): 
        self.mutex.wait()         # modify val & queue in mutex 
            self.val += 1 
            if self.queue: 
                barrier = self.queue.popleft() # FIFO! 
                barrier.signal() 
        self.mutex.signal()

   def wait(self): 
       barrier = Semaphore(0)    # thread-local semaphore 
       block = False 
       self.mutex.wait()         # modify val & queue in mutex 
           self.val -= 1 
           if self.val < 0: 
               self.queue.append(barrier) 
               block = True 
       self.mutex.signal() 
       if block: 
           barrier.wait()        # block outside mutex!

class FifoSem: 
    def __init__(self, val): 
        self.val   = val          # FifoSem’s semaphore value 
        self.mutex = Semaphore(1) # possibly non-FIFO semaphore 
        self.queue = deque()      # non-thread-safe queue
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henceforth, we will assume that all 
semaphores have built-in FIFO semantics 
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III. “Dining Philosophers” problem
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typical setup: protect shared resources with 
	 semaphores

94 Classical synchronization problems

The last requirement is one way of saying that the solution should be efficient;
that is, it should allow the maximum amount of concurrency.

We make no assumption about how long eat and think take, except that
eat has to terminate eventually. Otherwise, the third constraint is impossible—
if a philosopher keeps one of the forks forever, nothing can prevent the neighbors
from starving.

To make it easy for philosophers to refer to their forks, we can use the
functions left and right:

Listing 4.29: Which fork?

1 def left(i): return i
2 def right(i): return (i + 1) % 5

The % operator wraps around when it gets to 5, so (4 + 1) % 5 = 0.
Since we have to enforce exclusive access to the forks, it is natural to use a

list of Semaphores, one for each fork. Initially, all the forks are available.

Listing 4.30: Variables for dining philosophers

1 forks = [Semaphore(1) for i in range(5)]

This notation for initializing a list might be unfamiliar to readers who don’t
use Python. The range function returns a list with 5 elements; for each element
of this list, Python creates a Semaphore with initial value 1 and assembles the
result in a list named forks.

Here is an initial attempt at get fork and put fork:

Listing 4.31: Dining philosophers non-solution

1 def get_forks(i):
2 fork[right(i)].wait()
3 fork[left(i)].wait()
4
5 def put_forks(i):
6 fork[right(i)].signal()
7 fork[left(i)].signal()

It’s clear that this solution satisfies the first constraint, but we can be pretty
sure it doesn’t satisfy the other two, because if it did, this wouldn’t be an
interesting problem and you would be reading Chapter 5.

Puzzle: what’s wrong?

94 Classical synchronization problems

The last requirement is one way of saying that the solution should be efficient;
that is, it should allow the maximum amount of concurrency.

We make no assumption about how long eat and think take, except that
eat has to terminate eventually. Otherwise, the third constraint is impossible—
if a philosopher keeps one of the forks forever, nothing can prevent the neighbors
from starving.

To make it easy for philosophers to refer to their forks, we can use the
functions left and right:

Listing 4.29: Which fork?

1 def left(i): return i
2 def right(i): return (i + 1) % 5

The % operator wraps around when it gets to 5, so (4 + 1) % 5 = 0.
Since we have to enforce exclusive access to the forks, it is natural to use a

list of Semaphores, one for each fork. Initially, all the forks are available.

Listing 4.30: Variables for dining philosophers

1 forks = [Semaphore(1) for i in range(5)]

This notation for initializing a list might be unfamiliar to readers who don’t
use Python. The range function returns a list with 5 elements; for each element
of this list, Python creates a Semaphore with initial value 1 and assembles the
result in a list named forks.

Here is an initial attempt at get fork and put fork:

Listing 4.31: Dining philosophers non-solution

1 def get_forks(i):
2 fork[right(i)].wait()
3 fork[left(i)].wait()
4
5 def put_forks(i):
6 fork[right(i)].signal()
7 fork[left(i)].signal()

It’s clear that this solution satisfies the first constraint, but we can be pretty
sure it doesn’t satisfy the other two, because if it did, this wouldn’t be an
interesting problem and you would be reading Chapter 5.

Puzzle: what’s wrong?



Computer 
ScienceScience

solution requirements: 

1. each fork held by one phil at a time 

2. no deadlock 

3. no philosopher may starve 

4. max concurrency should be possible
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The last requirement is one way of saying that the solution should be efficient;
that is, it should allow the maximum amount of concurrency.

We make no assumption about how long eat and think take, except that
eat has to terminate eventually. Otherwise, the third constraint is impossible—
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list of Semaphores, one for each fork. Initially, all the forks are available.

Listing 4.30: Variables for dining philosophers

1 forks = [Semaphore(1) for i in range(5)]

This notation for initializing a list might be unfamiliar to readers who don’t
use Python. The range function returns a list with 5 elements; for each element
of this list, Python creates a Semaphore with initial value 1 and assembles the
result in a list named forks.

Here is an initial attempt at get fork and put fork:

Listing 4.31: Dining philosophers non-solution

1 def get_forks(i):
2 fork[right(i)].wait()
3 fork[left(i)].wait()
4
5 def put_forks(i):
6 fork[right(i)].signal()
7 fork[left(i)].signal()

It’s clear that this solution satisfies the first constraint, but we can be pretty
sure it doesn’t satisfy the other two, because if it did, this wouldn’t be an
interesting problem and you would be reading Chapter 5.

Puzzle: what’s wrong?

Naive solution:

possible deadlock!
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Solution 2: global mutex

- may prohibit a philosopher from eating 
when his forks are available

1 def get_forks(i):    
2    mutex.wait()    
3        fork[right(i)].wait()    
4        fork[left(i)].wait()    
5    mutex.signal()    

no starvation & max concurrency?



Computer 
ScienceScience

4.4 Dining philosophers 99

4.4.3 Dining philosophers solution #1

If there are only four philosophers at the table, then in the worst case each one
picks up a fork. Even then, there is a fork left on the table, and that fork has
two neighbors, each of which is holding another fork. Therefore, either of these
neighbors can pick up the remaining fork and eat.

We can control the number of philosophers at the table with a Multiplex
named footman that is initialized to 4. Then the solution looks like this:

Listing 4.32: Dining philosophers solution #1

1 def get_forks(i):
2 footman.wait()
3 fork[right(i)].wait()
4 fork[left(i)].wait()
5
6 def put_forks(i):
7 fork[right(i)].signal()
8 fork[left(i)].signal()
9 footman.signal()

In addition to avoiding deadlock, this solution also guarantees that no
philosopher starves. Imagine that you are sitting at the table and both of your
neighbors are eating. You are blocked waiting for your right fork. Eventually
your right neighbor will put it down, because eat can’t run forever. Since you
are the only thread waiting for that fork, you will necessarily get it next. By a
similar argument, you cannot starve waiting for your left fork.

Therefore, the time a philosopher can spend at the table is bounded. That
implies that the wait time to get into the room is also bounded, as long as
footman has Property 4 (see Section 4.3).

This solution shows that by controlling the number of philosophers, we can
avoid deadlock. Another way to avoid deadlock is to change the order in which
the philosophers pick up forks. In the original non-solution, the philosophers
are “righties”; that is, they pick up the right fork first. But what happens if
Philosopher 0 is a leftie?

Puzzle: prove that if there is at least one leftie and at least one rightie, then
deadlock is not possible.

Hint: deadlock can only occur when all 5 philosophers are holding one fork
and waiting, forever, for the other. Otherwise, one of them could get both forks,
eat, and leave.

The proof works by contradiction. First, assume that deadlock is possible.
Then choose one of the supposedly deadlocked philosophers. If she’s a leftie,
you can prove that the philosophers are all lefties, which is a contradiction.
Similarly, if she’s a rightie, you can prove that they are all righties. Either way
you get a contradiction; therefore, deadlock is not possible.

   footman = Semaphore(4)

Solution 3: limit # diners

no starvation & max concurrency?
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Solution 4: leftie(s) vs. rightie(s)
1 def get_forks(i):    
2    fork[right(i)].wait()    
3    fork[left(i)].wait()   

1 def get_forks(i):    
2    fork[left(i)].wait()    
3    fork[right(i)].wait()   

vs. (at least one of  each)

no starvation & max concurrency?
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no starvation & max concurrency?

def get_fork(i): 
    mutex.wait() 
        state[i] = 'hungry' 
        test(i)              # check neighbors’ states 
    mutex.signal() 
    sem[i].wait()            # wait on my own semaphore 
!
def put_fork(i): 
    mutex.wait() 
        state[i] = 'thinking' 
        test(right(i))       # signal neighbors if they can eat 
        test(left(i)) 
    mutex.signal() 
!
def test(i): 
    if state[i] == 'hungry' \ 
       and state[left(i)] != 'eating' \ 
       and state[right(i)] != 'eating': 
        state[i] = 'eating' 
        sem[i].signal()      # this signals me OR a neighbor

state = ['thinking'] * 5 
sem = [Semaphore(0) for i in range(5)] 
mutex = Semaphore(1)
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moral: synchronization problems are insidious!
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IV. Dining Savages



Computer 
ScienceScience

	 A tribe of  savages eats communal dinners from a large 
pot that can hold M servings of  stewed missionary. When a 
savage wants to eat, he helps himself  from the pot, unless it 
is empty. If  the pot is empty, the savage wakes up the cook 
and then waits until the cook has refilled the pot.

Chapter 5

Less classical

synchronization problems

5.1 The dining savages problem

This problem is from Andrews’s Concurrent Programming [1].

A tribe of savages eats communal dinners from a large pot that
can hold M servings of stewed missionary1. When a savage wants to
eat, he helps himself from the pot, unless it is empty. If the pot is
empty, the savage wakes up the cook and then waits until the cook
has refilled the pot.

Any number of savage threads run the following code:

Listing 5.1: Unsynchronized savage code

1 while True:
2 getServingFromPot()
3 eat()

And one cook thread runs this code:

Listing 5.2: Unsynchronized cook code

1 while True:
2 putServingsInPot(M)

1This problem is based on a cartoonish representation of the history of Western mis-
sionaries among hunter-gatherer societies. Some humor is intended by the allusion to the
Dining Philosophers problem, but the representation of “savages” here isn’t intended to be
any more realistic than the previous representation of philosophers. If you are interested in
hunter-gatherer societies, I recommend Jared Diamond’s Guns, Germs and Steel, Napoleon
Chagnon’s The Yanomamo, and Redmond O’Hanlon’s In Trouble Again, but not Tierney’s
Darkness in El Dorado, which I believe is unreliable.
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1 while True:
2 putServingsInPot(M)

1This problem is based on a cartoonish representation of the history of Western mis-
sionaries among hunter-gatherer societies. Some humor is intended by the allusion to the
Dining Philosophers problem, but the representation of “savages” here isn’t intended to be
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rules: 
- savages cannot invoke getServingFromPot if  
the pot is empty 

- the cook can invoke putServingsInPot only 
if  the pot is empty
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servings  =  0  
mutex        =  Semaphore(1)  
emptyPot  =  Semaphore(0)  
fullPot    =  Semaphore(0)

hint:
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5.1.2 Dining Savages solution

My solution is a combination of the scoreboard pattern with a rendezvous. Here
is the code for the cook:

Listing 5.4: Dining Savages solution (cook)

1 while True:
2 emptyPot.wait()
3 putServingsInPot(M)
4 fullPot.signal()

The code for the savages is only a little more complicated. As each savage
passes through the mutex, he checks the pot. If it is empty, he signals the cook
and waits. Otherwise, he decrements servings and gets a serving from the pot.

Listing 5.5: Dining Savages solution (savage)

1 while True:
2 mutex.wait()
3 if servings == 0:
4 emptyPot.signal()
5 fullPot.wait()
6 servings = M
7 servings -= 1
8 getServingFromPot()
9 mutex.signal()

10
11 eat()

It might seem odd that the savage, rather than the cook, sets servings =
M. That’s not really necessary; when the cook runs putServingsInPot, we know
that the savage that holds the mutex is waiting on fullPot. So the cook could
access servings safely. But in this case, I decided to let the savage do it so
that it is clear from looking at the code that all accesses to servings are inside
the mutex.

This solution is deadlock-free. The only opportunity for deadlock comes
when the savage that holds mutex waits for fullPot. While he is waiting,
other savages are queued on mutex. But eventually the cook will run and signal
fullPot, which allows the waiting savage to resume and release the mutex.

Does this solution assume that the pot is thread-safe, or does it guarantee
that putServingsInPot and getServingFromPot are executed exclusively?
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shared servings counter → scoreboard pattern 

- arriving threads check value of  
scoreboard to determine system state 

- note: scoreboard may consist of  more 
than one variable
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V. Baboon Crossing
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gurantee rope mutex
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max of  5 at a time
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no starvation
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solution consists of  east&west baboon 
threads: 

1. categorical mutex 

2. max of  5 on rope 

3. no starvation
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hint:
multiplex = Semaphore(5) 
turnstile = Semaphore(1) 
rope      = Semaphore(1) 
e_switch  = Lightswitch() 
w_switch  = Lightswitch()

1 while True:    
2    climbOnRope()    
3    crossChasm()   

unsynchronized baboon code (identical for both sides)
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76 Classical synchronization problems

Patterns similar to this reader code are common: the first thread into a
section locks a semaphore (or queues) and the last one out unlocks it. In fact,
it is so common we should give it a name and wrap it up in an object.

The name of the pattern is Lightswitch, by analogy with the pattern where
the first person into a room turns on the light (locks the mutex) and the last one
out turns it off (unlocks the mutex). Here is a class definition for a Lightswitch:

Listing 4.16: Lightswitch definition

1 class Lightswitch:
2 def __init__(self):
3 self.counter = 0
4 self.mutex = Semaphore(1)
5
6 def lock(self, semaphore):
7 self.mutex.wait()
8 self.counter += 1
9 if self.counter == 1:

10 semaphore.wait()
11 self.mutex.signal()
12
13 def unlock(self, semaphore):
14 self.mutex.wait()
15 self.counter -= 1
16 if self.counter == 0:
17 semaphore.signal()
18 self.mutex.signal()

lock takes one parameter, a semaphore that it will check and possibly hold.
If the semaphore is locked, the calling thread blocks on semaphore and all
subsequent threads block on self.mutex. When the semaphore is unlocked,
the first waiting thread locks it again and all waiting threads proceed.

If the semaphore is initially unlocked, the first thread locks it and all subse-
quent threads proceed.

unlock has no effect until every thread that called lock also calls unlock.
When the last thread calls unlock, it unlocks the semaphore.

Reminder: Lightswitch ADT
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multiplex = Semaphore(5) 
turnstile = Semaphore(1) 
rope      = Semaphore(1) 
e_switch  = Lightswitch() 
w_switch  = Lightswitch()

while True: 
 # east side 
 turnstile.wait() 
 e_switch.lock(rope) 
 turnstile.signal() 
!
 multiplex.wait() 
 climbOnRope() 
 crossChasm() 
 multiplex.signal() 
!
 e_switch.unlock(rope)

while True: 
 # west side 
 turnstile.wait() 
 w_switch.lock(rope) 
 turnstile.signal() 
!
 multiplex.wait() 
 climbOnRope() 
 crossChasm() 
 multiplex.signal() 
!
 w_switch.unlock(rope)
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multiplex  = Semaphore(5) 
turnstile  = Semaphore(1) 
rope       = Semaphore(1) 
mutex_east = Semaphore(1) 
mutex_west = Semaphore(1) 
east_count = west_count = 0

# east side 
turnstile.wait() 
mutex_east.wait() 
  east_count++ 
  if east_count == 1: 
    rope.wait() 
mutex_east.signal() 
turnstile.signal() 
      
multiplex.wait() 
  # cross the chasm 
multiplex.signal() 
!
mutex_east.wait() 
  east_count-- 
  if east_count == 0: 
    rope.signal() 
mutex_east.signal()

# west side 
turnstile.wait() 
mutex_west.wait() 
  west_count++ 
  if west_count == 1: 
    rope.wait() 
mutex_west.signal() 
turnstile.signal() 
      
multiplex.wait() 
  # cross the chasm 
multiplex.signal() 
!
mutex_west.wait() 
  west_count-- 
  if west_count == 0: 
    rope.signal() 
mutex_west.signal()
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… many, many more contrived problems 
await you in the little book of  
semaphores!


