
Full Name:

CS 450 Fall 2010

Midterm Exam

October 13, 2010

Instructions:

• This exam is closed-book, closed-notes.

• Keep your written answers concise and to-the-point. I reserve the right to deduct points for
needless verbiage.

• Write your full name on the front, and make sure that your exam is not missing any sheets.

• Good luck!

Problem 1 (/10) :

Problem 2 (/9) :

Problem 3 (/12) :

Problem 4 (/6) :

Problem 5 (/6) :

Problem 6 (/6) :

TOTAL (/49) :

Page 1 of 8



Problem 1. (10 points):

Multiple choice. For each of the following multiple choice problems, choose the single best answer
by circling (not checking, crossing, or underlining — circling!) its corresponding letter.

1. A valid argument against a monolithic kernel design is that, in such an architecture:

(a) message passing between kernel modules is inefficient

(b) a bug in one kernel module (e.g., a device driver) may crash the entire kernel

(c) an increased number of context switches are required

(d) system calls require hardware intervention

2. On a modern operating system that is continually running highly interactive, “bursty” pro-
cesses, which of the following is arguably the least important scheduler metric to optimize?

(a) response time

(b) average wait time

(c) process turnaround time

(d) CPU utilization

3. A preemptive scheduler is best identified by its ability to carry out this state transition:

(a) ready → running

(b) running → blocked

(c) blocked → running

(d) running → ready

4. Which of the following events would most likely cause a multilevel feedback queue scheduler
to move a given process from a lower level RR queue (q=N) to a higher level RR queue (q=M
– assume M < N)?

(a) the current CPU burst is preempted before it can complete

(b) the current CPU burst is preempted multiple times before completing

(c) the current CPU burst completes in less than N time

(d) the current CPU burst completes in less than M time

5. Which of the following scheduling algorithms is not prone to starvation?

(a) selfish round-robin

(b) preemptive shortest job first

(c) first come, first served

(d) multilevel queue

Page 2 of 8



Problem 2. (9 points):

The following are CPU burst durations for five processes.

Process CPU Burst

P0 5
P1 2
P2 1
P3 4
P4 3

Complete the following table with the individual process and average waiting times for each of the
indicated scheduling policies. Assume that all processes arrive at time 0, and, for the purposes of
FCFS and RR, are initially ordered as shown in the wait queue. Ignore context switch overhead.

Wait Times

Scheduling policy P0 P1 P2 P3 P4 Avg wait time

First-Come First-Served

Non-preemptive Shortest Job First

Round-Robin (quantum=2)

Feel free to use the space below for your work. You do not need to draw a Gantt diagram for each
scheduling algorithm (unless it helps you).

Page 3 of 8



Problem 3. (12 points):

The following configuration file is used to set up an experiment in the UTSA scheduling simulator:

cstin 0.2

cstout 0.2

numprocs 100

firstarrival 0

interarrival constant 0

duration constant 100

cpuburst uniform 5 20

ioburst constant 50

The run file (not shown) specifies the following four different scheduling algorithms – listed out of
order – to be used with the configuration above:

• Shortest Job First

• Preemptive Shortest Job First

• Round Robin (q=10)

• Round Robin (q=20)

The tabulated output of the simulation is shown below:

Your job is to solve the riddle: which algorithms correspond to ALG 1, 2, 3, and 4?

Circle your guesses on the following page. For full credit, you must justify your answers.

Page 4 of 8



• ALG 1: SJF / PSJF / RR(10) / RR(20)

Explanation:

• ALG 2: SJF / PSJF / RR(10) / RR(20)

Explanation:

• ALG 3: SJF / PSJF / RR(10) / RR(20)

Explanation:

• ALG 4: SJF / PSJF / RR(10) / RR(20)

Explanation:

Page 5 of 8



Problem 4. (6 points):

Consider the following lines taken from the retu assembly function:

0743 mov (sp),KISA6

0744 mov $_u,r0

0745 1:

0746 mov (r0)+,sp

0747 mov (r0)+,r5

What is the purpose of line 0743? In particular, how is the kernel virtual address space affected?

What is the combined effect of lines 0744-0747? Why is it crucial for these lines to be executed
after line 0743 (e.g., what would happen if they weren’t)?

Page 6 of 8



Problem 5. (6 points):

Consider the following v6 snippet:

n = -1;

for (rp = &proc[0]; rp < &proc[NPROC]; rp++)

if (rp->p_stat == SRUN && (rp->p_flag&SLOAD) == 0 && rp->p_time > n) {

p1 = rp;

n = rp->p_time;

}

if (n == -1) {

runout++;

sleep(&runout, PSWP);

goto loop;

}

What is the loop searching for? And more specifically, what type of scheduling is being performed?

What does the kernel do after exiting the loop, upon first encountering this code during the startup
sequence? Why?

Page 7 of 8



Problem 6. (6 points):

We first encounter a call to savu in the newproc function – the context is shown below:

savu(u.u_rsav);

rpp = p;

u.u_procp = rpp;

rip = up;

n = rip->p_size;

a1 = rip->p_addr;

rpp->p_size = n;

a2 = malloc(coremap, n);

Note that up refers to the “parent” process, while p refers to the new process being created.

Why is it so important that savu be called here, within the newproc function, and before the call
to malloc (and the subsequent initialization of the new process’s user data area)? Explain.

Page 8 of 8


