CS 450: Operating Systems
Lecture 11: Monitors

——

Spring 2014, J. Sasaki
Dept of Computer Science
lllinois Institute of Technology

Monitors

Build in Mutual Exclusion

« Build mutex into language
e python's with mutex ...
 Monitor (ADT/module/object class)

* Define collection of procedures that
should execute mutually exclusively.

» Define objects whose methods will
execute mutually exclusively.

e Helpful but not a panacea.

Monitor Mutex

e Typical monitor

monitor monitor-name {
// shared variable declarations

procedure Pl (..) { ... }
procedure Pn (..) {....}
initialization code (..) { .. }

}

* Only one procedure/method can be executing
at any time; call blocks if necessary.

Schematic view of a Monitor

entry queue < f_‘.('\,

¢

\ operations /
\ inttialization /
= code S

. -
e -
—_— —

Non-Mutex Blocking

« Semaphore combines notions of atomic action,
atomic test, and thread blocking.

 Mutex permits atomic actions and tests.

« Semaphores often used as blocks released
when a thread achieves some state.

* Monitors need a blocking mechanism.

Condition Variables

condition X, Vy;
 Two operations on a condition variable:
e x.wait () — block this thread.

e Xx.signal () —resumes one thread of those
(if any) that invoked x.wait ()

e If no threads are waiting for x, then there's
no effect.

Monitor with Condition
Variables

entry queue
//’ e B «"J\‘(';y‘\
3 Sy \-" \
shared data g
queues associated with [/ X—l+li+I}
X, y conditions \/ Y —»E+h \
/ :
J;’ B | i
|
L N J
{ |
l J
1 |
\ J
'\Il \ =
\ .
\ operations

\ /‘/
\ initialization /

\\\-~, code =

i

Condition Variables Choices

e If procedure P invokes x.signal () with Qin
x.wait () state, what should happen next?

e To maintain mutex, if Q is resumed then P must
wait.

e Should signal stop P immediately or when it
leaves monitor?

Signaling Options

e Concurrent Pascal, Mesa, C#, Java...:

« Signal and leave: Executing x.signal ()
causes P to leave the monitor; Q is resumed.

e Older techniques

« Signal and wait: P waits until Q leaves the
monitor or does await ().

e Signal and continue: Q waits until P leaves
the monitor or does await ().

10

Dining Philosophers Solution

e Each philosopher i invokes the operations
pickup () and putdown () in the following
seguence:

eDiningPhilosophers.pickup(1i);
e EAT
eDiningPhilosophers.putdown(1);

 No deadlock, but starvation is possible

11

Dining Philosophers (Cont.)

monitor DiningPhilosophers ({

enum {THINKING, HUNGRY, EATING} state [5];
condition can eat[5];

initialization code() {
for (int i = 0; i < 5; i++)
state[i] = THINKING;
}

void pickup (int 1) {
state[1] = HUNGRY;
test(1i);
if (state[i] != EATING)
can eat[i].wait;

12

Dining Philosophers (Cont.)

void putdown (int i) {
state[i1] = THINKING;
// Let neighbors try to eat
test(left neighbor(i));
test(right neighbor(i));

}
void test(int j) {
if (state[j] == HUNGRY
&& state[left neighbor(j)] != EATING
&& state[right neighbor(j)] != EATING)
{
state[]j] = EATING;

can eat[]J].signal();

13

Monitor Implementation
Using Semaphores

e For each monitor:

semaphore mutex; // (initially = 1)
semaphore next; // (initially = 0)
int next count; // (initially = 0)
« Wrap body of each procedure with mutex code:

wait (mutex);

... body of procedure ...

if (next count > 0)

signal (next); // let someone enter

else
signal (mutex) ;

14

Implementing Condition Vars

e For each condition variable x:

semaphore x sem; // (initially = 0)
int x count = 0;

e Xx.wait () code (uses x sem as a barrier):

X_count++;
if (++next count > 0)
signal (next);
else
signal (mutex) ;

wait(x_sem);
X count--;

15

Monitor Implementation
(Cont.)

e Xx.signal () code:

1f (x count > 0) {
next count++;
signal(x sem);

walit (next);
next count--;

16

