
CS 450: Operating Systems
Lecture 11: Monitors

Spring 2014, J. Sasaki
Dept of Computer Science

Illinois Institute of Technology

1

1

Monitors

2

2

Build in Mutual Exclusion

• Build mutex into language

• python's with mutex …

• Monitor (ADT/module/object class)

• Define collection of procedures that
should execute mutually exclusively.

• Define objects whose methods will
execute mutually exclusively.

• Helpful but not a panacea.

3

3

Monitor Mutex

• Typical monitor
 monitor monitor-name {

 // shared variable declarations
 procedure P1 (…) { …. }
 procedure Pn (…) {……}
 initialization code (…) { … }
}

• Only one procedure/method can be executing
at any time; call blocks if necessary.

4

4

Schematic view of a Monitor

5

5

Non-Mutex Blocking

• Semaphore combines notions of atomic action,
atomic test, and thread blocking.

• Mutex permits atomic actions and tests.

• Semaphores often used as blocks released
when a thread achieves some state.

• Monitors need a blocking mechanism.

6

6

Condition Variables

 condition x, y;
• Two operations on a condition variable:

• x.wait() – block this thread.

• x.signal() – resumes one thread of those
(if any) that invoked x.wait()

• If no threads are waiting for x, then there's
no effect.

7

7

 Monitor with Condition
Variables

8

8

Condition Variables Choices

• If procedure P invokes x.signal() with Q in
x.wait() state, what should happen next?

• To maintain mutex, if Q is resumed then P must
wait.

• Should signal stop P immediately or when it
leaves monitor?

9

9

Signaling Options

• Concurrent Pascal, Mesa, C#, Java…:

• Signal and leave: Executing x.signal()
causes P to leave the monitor; Q is resumed.

• Older techniques

• Signal and wait: P waits until Q leaves the
monitor or does a wait().

• Signal and continue: Q waits until P leaves
the monitor or does a wait().

10

10

• Each philosopher i invokes the operations
pickup() and putdown() in the following
sequence:

•DiningPhilosophers.pickup(i);
• EAT

•DiningPhilosophers.putdown(i);
• No deadlock, but starvation is possible

Dining Philosophers Solution

11

11

Dining Philosophers (Cont.)

monitor DiningPhilosophers {

! enum {THINKING, HUNGRY, EATING} state [5];
! condition can_eat[5];

 initialization_code() {
 for (int i = 0; i < 5; i++)
 state[i] = THINKING;
 }

 void pickup (int i) {
 state[i] = HUNGRY;
 test(i);
 if (state[i] != EATING)
 can_eat[i].wait;
! }

12

12

Dining Philosophers (Cont.)

 void putdown (int i) {
 state[i] = THINKING;
 // Let neighbors try to eat
 test(left_neighbor(i));
 test(right_neighbor(i));
 }

 void test(int j) {
 if (state[j] == HUNGRY
 && state[left_neighbor(j)] != EATING
 && state[right_neighbor(j)] != EATING)
 {
 state[j] = EATING;
 can_eat[j].signal();
 }
 }

13

13

Monitor Implementation
Using Semaphores

• For each monitor:

 semaphore mutex; // (initially = 1)
semaphore next; // (initially = 0)
int next_count; // (initially = 0)

• Wrap body of each procedure with mutex code:

 wait(mutex);

 … body of procedure …

 if (next_count > 0)
 signal(next); // let someone enter
else
 signal(mutex);

14

14

Implementing Condition Vars

• For each condition variable x:

 semaphore x_sem; // (initially = 0)
int x_count = 0;

• x.wait() code (uses x_sem as a barrier):

 x_count++;
if (++next_count > 0)
 signal(next);
else
 signal(mutex);

 wait(x_sem);
x_count--;!

15

15

Monitor Implementation
(Cont.)

• x.signal() code:

 if (x_count > 0) {
 next_count++;
 signal(x_sem);

 wait(next);
 next_count--;
}!!

16

16

