
CS 450: Operating Systems
Lecture 10: Dining

Philosophers
Spring 2014, J. Sasaki

Dept of Computer Science
Illinois Institute of Technology

1

1

Dining Philosophers

2

2

Another Classical Problem

• Producer-Consumer Problem:
Sharing a resource that can be used
in different ways.

•Dining Philosopher Problem
involves sharing multiple copies of
the same resource.
• Each user needs 2 of the 5 items.

3

3

Dining Philosphers

• Dining table, 5 philosophers, 5 forks, bowl of
spaghetti in middle of table.

• To eat, each philosopher
needs to grab the
two forks on either
side.

• A fork can be held
only by 1 philosopher

4

₁

₂
₃

₄ ₀ψ|₀
ψ|₁

ψ|₂ψ|₃

ψ|₄

4

Example: Dining Philosphers

• P₀ and P₃ each
have 2 forks and
can eat.

• P₁ and P₄ have no
forks and can't
eat.

• P₂ has a right fork
but no left fork; it
can't eat.

5

₁

₂
₃

₄ ₀
ψ|₀ ψ|₁

ψ|₂

ψ|₃

ψ|₄

5

Dining Philosophers

• Model: 1 threads/philosopher, 1 mutex
semaphore per fork.

• Fork left(i) is philosopher i’s left fork
• Fork right(i) is philosopher i’s right fork

 Semaphore forks[5];
define right(i) = i;
define left(i) = (i+1) % 5

6

6

Dining Philosophers

• Philosophers alternate between eating and
not eating

 philosopher P_i : do {
 …
 get_forks(i)
 … eat …
 release_forks(i);
 …
} while (…);

7

7

•Solution 1:
get_forks(i):
 forks[right(i)].wait();
 forks[left(i)].wait();

release_forks():
 forks[right(i)].signal();
 forks[left(i)].signal();

•But what happens if all P's grab their right fork
before any grabs their left one?

1: Naive Solution

8

8

• Everyone holds a right fork & waits for left fork

Deadlock

9

₁

₂
₃

₄ ₀
ψ|₀

ψ|₁

ψ|₂

ψ|₃

ψ|₄

9

1a: Drop Right Fork if Left
Fork Unavailable?

• Can create a version of wait() that doesn't wait
but returns boolean true/false saying whether or
not we succeeded in picking up a fork.

 while (!success) {
 forks[right(i)].wait();
 if (!forks[left(i)].try())
 forks[right(i)].signal();
 else success = true;
}

• Possible to get “live lock”

10

10

Livelock

• Alternate two states; unlikely due to timings

11

₁

₂
₃

₄ ₀
ψ|₀

ψ|₁

ψ|₂

ψ|₃

ψ|₄ ⇔
₁

₂
₃

₄ ₀ψ|₀
ψ|₁

ψ|₂ψ|₃

ψ|₄

11

• Define a mutex for eating?

 Semaphore can_eat_mutex = 1;
get_forks(i):
 can_eat_mutex.wait();
 forks[right(i)].wait();
 forks[left(i)].wait();
 can_eat_mutex.signal();

• Any starvation possible?

• How much concurrency?

2: Global Lock?

12

12

• Let 2 diners eat simultaneously?

 Semaphore can_eat = 2;
 get_forks(i):
 can_eat.wait();
 forks[right(i)].wait();
 forks[left(i)].wait();
 can_eat.signal();

• Now, how about starvation and concurrency?

3: Multiplex Two Eaters

13

13

4: Slightly Asymmetric Diners

• Let P₀, …, P₃ try to grab their forks
right then left, but P4 tries to grab
forks left then right. Can deadlock
still occur?

• Say P₀, …, P₃ each grabs their right
fork; then P₄ tries to grab its left fork

•Who eats? Who waits?

14

14

• What if P₃ is much faster than the others?

Slightly Asymmetric

15

₁

₂
₃

₄ ₀
ψ|₀

ψ|₁

ψ|₂

ψ|₃

ψ|₄

15

5: Alternate Lefty-Righty

• Even-numbered philosophers get
right fork then left fork

•Odd-numbered philosophers get
left fork then right fork.
• Say P₀, P₂, P₄ get left forks 0, 2, 4
• P₁, P₃ block trying for 2, 4
• So 1 & 3 are available for P₀, P₂.

16

16

Alternate Lefty-Righty

17

₁

₂
₃

₄ ₀
ψ|₀

ψ|₁

ψ|₂

ψ|₃

ψ|₄ ⇒
₁

₂
₃

₄ ₀
ψ|₀ ψ|₁

ψ|₂ψ|₃

ψ|₄

17

6: Limit Attempts to Eat

• No deadlock if only four P's attempt to eat.

• Introduce 4 napkins; to eat, you must first get a
napkin and then get your forks.
 Semaphore napkins = 4;
…
napkins.wait();
 forks[right(i)].wait();
 forks[left(i)].wait();
napkins.signal();

• Starvation? Concurrency?

18

18

Need a Napkin

• P₀ and P₂ have
napkins and got forks.

• P₁ and P₄ have
napkins but are still
missing forks.

• P₃ has no napkin, so it
can’t even try to get a
fork

• No deadlock, but
what about starvation
and concurrency?

19

₁

₂
₃

₄ ₀
ψ|₀ ψ|₁

ψ|₂ψ|₃

ψ|₄

19

