
CS 450: Operating Systems
Lecture 9: Concurrency

Problems
Spring 2014, J. Sasaki

Dept of Computer Science
Illinois Institute of Technology

1

1

Reader-Writer Problem

2

2

The Reader-Writer Problem

• The Reader-Writer problem studies a resource
with different categories of use that have different
exclusion needs.

• Database shared by reader and writer threads.

• Multiple threads can read concurrently.

• Writer threads can't write concurrently.

• If a writer is writing, no reader can read.

• Pedestrian crossing problem (pedestrians vs cars)

3

3

Reader-Writer Solution

• int read_count = 0; // nbr readers

• semaphore RC_mutex = new Semaphore(1);
 // mutex for read_count

• semaphore DB_mutex = new Semaphore(1);
 // mutex for database access

4

4

Writer Process

• Writers are straightforward:

 do {
 DB_mutex.wait();
 … perform write …
 DB_mutex.signal();
} while(…);

5

5

Reader Process

• First reader has to wait for database.

• Other readers wait for first reader to get DB
(by waiting to update read_count)

• Each finishing reader decreases read_count

• Last finishing reader releases DB.

6

6

 // Reader (embedded in do-while loop)

 RC_mutex.wait();
 ++read_count;
 if (read_count == 1) {
 DB_mutex.wait();
 }
 RC_mutex.signal();

 … read DB …

 RC_mutex.wait();
 --read_count;
 if (read_count == 0) {
 DB_mutex.signal();
 }
 RC_mutex.signal();

7

7

Problem Variations

• First variation: A reader is kept waiting only if a
writer has the database.

• If the readers have the DB, then other
readers can appear and get the DB.

• Writers can starve.

• Second variation: A writer is kept waiting only if
another writer has the database.

• Readers may starve

8

8

Problem Variations

• Resource with multiple levels of user

• Users of different levels are mutually
excluded.

• Are services mutually exclusive within the
same level?

• Variation 1: Reader users have higher priority
than writer users.

• Variation 2: Writer users have higher priority
than reader users.

9

9

Fairness?

• Which thread does semaphore signal unblock?
— Unpredictable

• Can't guarantee bounded waiting.

• Queueing the blocked threads would help.

• Can we attach a queue to a semaphore?

10

10

Semaphores in Python

11

11

Python Semaphores

12

import threading
from threading import Semaphore
from threading import BoundedSemaphore;

Plain semaphore can become larger than initial value
Note: acquire() = P(), release() = V()
#
>>> s1 = Semaphore(1) # max value
>>> s1.release() # ok

Bounded semaphore can’t become larger than
initial value
#
>>> s2 = BoundedSemaphore(1)
>>> s2.release() # causes runtime error

12

Mutex Program

• Small python program runs two threads in parallel.

• Thread n’s critical section prints (n n n).

• To simulate unpredictable speed of execution, we sleep
random amounts of time before printing (n, n, and n)
and outside the critical section.

• If a (1 1 1) and (2 2 2) are interleaved, then the
threads were both in their critical sections,
concurrently.

• If safe is True, we use a mutex semaphore and treat
the printing as a critical section (and avoid interleaving).

13

13

mutex.py

from threading import Thread, BoundedSemaphore
import random, time

def main(safe = True, trials = 5):
! global mutex
! mutex = BoundedSemaphore(1)
! p_args = {'safe': safe, 'trials': trials}
! p1 = Thread(target = thread, args=(1,), kwargs=p_args)
! p2 = Thread(target = thread, args=(2,), kwargs=p_args)
! p1.start()
! p2.start()
! p1.join()
! p2.join()
! print()

14

14

def thread(pnbr, safe = False, trials = 5):
! global mutex
! for i in range(trials):
! ! if safe:
! ! ! mutex.acquire()
! ! trace(pnbr, '({}')
! ! trace(pnbr, '{}')
! ! trace(pnbr, '{})')
! ! if safe:
! ! ! mutex.release()
! ! time.sleep(random.randint(0,2))

def trace(pnbr, tag):
! print((tag + ' ').format(pnbr), \
! ! end = '', flush = True)
! time.sleep(random.randint(0,2))

15

15

> python3 -i mutex.py
>>> main()
(1 1 1) (2 2 2) (1 1 1) (1 1 1) (1 1 1)
(1 1 1) (2 2 2) (2 2 2) (2 2 2) (2 2 2)
>>> main(safe = False)
(1 (2 2 2) (2 1 1) (1 2 2) 1 1) (1 (2 1
2 1) 2) (1 (2 2 2) 1 (2 1) 2 2) (1 1 1)
>>>

16

16

Reader-Writer Program

• Writer thread 1 will get DB mutex, print (w1 w1
w1) respectively (peppered with random
sleeps), then release DB mutex. (Writer 2 similar.)

• Reader thread 1 prints (r1 RC and r1 RC)
around each RC mutex get & release; it prints
[r1 DB and r1 DB] around each DB mutex get
& release. It prints r1 between the two RC
mutex gets & releases, to indicate it’s reading
the DB. (Reader 2 is similar.)

17

17

from threading import Thread, BoundedSemaphore
import random, time

def main(safe = True, trials = 5):
! global RC_mutex, DB_mutex, read_count
! read_count = 0; # nbr readers
! RC_mutex = BoundedSemaphore(1);
! DB_mutex = BoundedSemaphore(1);
! p_args = {'safe': safe, 'trials': trials}
! r1 = Thread(target = reader, args=(1,), kwargs=p_args)
! r2 = Thread(target = reader, args=(2,), kwargs=p_args)
! w1 = Thread(target = writer, args=(1,), kwargs=p_args)
! w2 = Thread(target = writer, args=(2,), kwargs=p_args)
! [r1.start(), r2.start(), w1.start(), w2.start()]
! [r1.join(), r2.join(), w1.join(), w2.join()]
! print()

18

18

def writer(id, safe = True, trials = 5):
! global DB_mutex
! for _ in range(trials):
! ! if safe:
! ! ! DB_mutex.acquire()
! ! trace_write(id, '(w{}')
! ! trace_write(id, 'w{}')
! ! trace_write(id, 'w{})')
! ! if safe:
! ! ! DB_mutex.release()
! ! time.sleep(random.randint(0,2))

def trace_write(id, tag):
! print((tag + ' ').format(id), flush=True, end='')
! time.sleep(random.randint(0,2))

19

19

def reader(id, safe = True, trials = 5):
! global RC_mutex, DB_mutex, read_count
! for _ in range(trials):
! ! if safe:
! ! ! RC_mutex.acquire()
! ! ! trace_read(id, '(r{} RC', end='')
! ! read_count = read_count + 1
! ! if safe:
! ! ! if read_count == 1:
! ! ! ! ! DB_mutex.acquire()
! ! ! ! ! trace_read(id, '[r{} DB')
! ! ! RC_mutex.release()
! ! ! trace_read(id, 'r{} RC)')

! ! trace_read(id, 'r{}')

… continued on next slide …

20

20

! ! if safe:
! ! ! RC_mutex.acquire()
! ! ! trace_read(id, '(r{} RC', end='')
! ! read_count = read_count - 1
! ! if safe:
! ! ! if read_count == 0:
! ! ! ! ! DB_mutex.release()
! ! ! ! ! trace_read(id, 'r{} DB]')
! ! ! RC_mutex.release()
! ! ! trace_read(id, 'r{} RC)')
! ! time.sleep(random.randint(0,2))

def trace_read(id, tag, end='\n'):
! print((tag + (' ' if end == '' else '')).\
! ! format(id), flush=True, end=end)
! time.sleep(random.randint(0,2))

21

21

> python3 -i readwrite.py
>>> main(trials=2)
(r1 RC [r1 DB!! r1 incr’s read count to 1 & gets DB for the readers
r1 RC)!! ! ! r1 releases read count
(r2 RC r2 RC)!! r2 gets read count, increments it to 2
r1!! ! ! ! r1 reads
r2!! ! ! ! r1 reads
(r2 RC r2 RC)!! r2 decrements read count to 1
(r1 RC r1 DB]!! r1 decrements read count to 0 & releases DB
(w1 w1 r1 RC)!! w1 gets DB & writes before r1 finishes decrement
w1) (r2 RC (w1 w1 w1) (w2 w2 w2) [r2 DB
! ! ! ! ! ! w1 finishes writing, gives up DB, but before
 r2 can get DB, w1 jumps in again & prints, then
 w2 jumps in and prints, then r2 gets the DB
r2 RC)		 	 	 r2 releases read count it held as w1 and w2 printed
(r1 RC r1 RC)!	 r1 increments read count to 2
r2!! ! 	 	 r2 reads
r1!! ! 	 	 r1 reads
(r2 RC r2 RC)!	 r2 decrements read count to 1
(r1 RC r1 DB]!! r1 decrements read count to 0 & releases DB
(w2 w2 w2) r1 RC)! w2 gets DB & writes before r1 finishes decrement

22

22

• With unsafe execution
 • w2 starts writing before w1 finishes
 • r2 reads before w1 finishes its 2nd write
 • w2 starts writing before w1 finishes 2nd write

>>> main(safe = False, trials = 2)
r1
r1
r2
(w1 w1 (w2 w1) w2 w2) (w1 w1 r2
(w2 w1) w2 w2)

23

23

FIFO Queue Semaphore

24

24

FIFO Queue of Blocked
Threads

• Given: Thread-unsafe queue mechanism.

• Want to attach a thread-safe queue of blocked
threads to a semaphore.

• If blocking is necessary, then wait() adds you
to the end of the queue and blocks

• If the queue is nonempty, signal() will unblock
the head of the queue.

25

25

FIFO Semaphore Approach

• Use lots of semaphores

• One mutex semaphore to protect queue.

• One semaphore that we conceptually wait/
signal

• To block on the FIFO semaphore, a thread
will create a thread-local semaphore,
enqueue it, and block on it.

• signal() dequeues/unblocks semaphore for
the next thread to awaken.

26

26

Pseudocode
FIFO_Sem class:
" int value; // value of semaphore
" Semaphore mutex; // for queue
" Queue queue;

new FIFO_Sem(initial_value):
" self.value = initial_value
" self.mutex = new Semaphore(1);
" self.queue = new Queue();

27

27

Pseudocode
wait():
 Semaphore barrier = new Semaphore(0)
 boolean block = false;

 self.mutex.wait();

 if (--self.value < 0) {
" " self.queue.enqueue(barrier);
" " block = true;
" }

 self.mutex.signal();

" if (block)
 barrier.wait();

28

28

Pseudocode
signal():
 self.mutex.wait();

 self.value++;

 if (!self.queue.is_empty()) {
" " Semaphore barrier
 = self.queue.dequeue();
 barrier.signal();
" }

 self.mutex.signal();

29

29

