
CS 450: Operating Systems
Lecture 8: Mutual Exclusion

& Synchronization
Spring 2014, J. Sasaki

Dept of Computer Science
Illinois Institute of Technology

1

1

Critical Sections

2

2

Critical Sections

• Say two threads have sections of code S₁ (in
one thread) and S₂ (in the other)…

 … such that we cannot allow both S₁ and S₂
to execute concurrently.

 (All of S₁ must finish before starting S₂ and
vice versa.)

• Then S₁ and S₂ are “critical sections” of their
threads. Example: Our x++ and x--.

3

3

Mutual Exclusion

• The mutual exclusion (“mutex”) problem is
the problem of avoiding concurrent execution
of critical sections.

• We can generalize to > two threads.

• We can generalize to > 1 piece of code in each
thread: Any identified piece of code in one
thread excludes any identified piece of code in
the other thread.

• We can also have > 1 mutex problem.

4

4

Wait Your Turn
turn = … // Either 0 or 1
// turn ∈ {0,1} = the thread allowed to proceed

/* Thread 0 */
while (turn != 0) ;
x++;

turn = 1;

/* Thread 1 */
while (turn != 1);
x--;

turn = 0;

 

5

5

Repeatedly Execute C.S.?
turn = … // Either 0 or 1
// turn ∈ {0,1} = the thread allowed to proceed
What if we repeatedly execute C.S.?

/* Thread 0 */
do {
 …
 CS0
 …
 } while (…)

/* Thread 1 */
do {
 …
 CS1
 …
 } while (…)

 

6

6

Wait Your Turn Only If We
Both Want to Go

• Use an array want[0..1]: want[i] true iff
thread i wants to access its C.S.

• If both threads want their C.S's, then turn ∈
{0,1} = the thread allowed to go

• We can go into our C.S. if it's our turn or if (it's
not our turn but) the other thread doesn't want
its C.S.

• We must wait if want [other] = true and turn
≠ us.

 

7

7

Peterson's Solution

L#
1 do {
2 …
3 want[us] = true;
4 turn = other;
5 while (want[other] && turn != us) ;
6 … Our Critical Section …
7 want[us] = false;
8 …
9 } while (…);

Let us = our thread nbr (0 or 1)
Let other = the other thread nbr (1 or 0)

8

8

Observations

• Once turn = us, it stays that way until we set
turn = other.

• want[us] is true between our lines 3…7.

• Only we set want[us]: The other thread
never changes our want[…] flag.

9

9

Mutual Exclusion ?

• Claim: During our line 6,
 want[us] ∧ (want[other] ⇒ turn = us)

• It holds instantaneously after our line 5.

• If want[other] holds then the other thread is in
its lines 3…7.

• The other thread set turn = us at its line 4 and
turn can't change while we're at line 6.

10

10

Mutual Exclusion !

• If we're at our C.S. (line 6), then
 want[us] ∧ (want[other] ⇒ turn = us)

• If the other thread is at its C.S. then
 want[other] ∧ (want[us] ⇒ turn = other)

• For us both to be in our C.S.'s, we need

• want[0], want[1], want[0] ⇒ turn = 1,
and want[1] ⇒ turn = 0

• These can't all be true simultaneously.

11

11

Progress & Bounded Waiting

• Peterson's solution guarantees progress: If no
thread is in its C.S. and a thread wants to enter
its C.S., then it can, eventually.

• Also guarantees bounded waiting: If a thread
is blocked trying to enter its C.S., it cannot wait
forever as the other thread enters its C.S. over
and over.

12

12

Recall Original Wait Loop

x = 10;
ok_to_go = true;

/* Thread 0 */
while (!ok_to_go) ;
ok_to_go = false;

x++;

ok_to_go = true;

/* Thread 1 */
while (!ok_to_go) ;
ok_to_go = false;

x--;

ok_to_go = true;

13

13

Test-and-Set

• The problem was with
 while (!ok_to_go) ;
! ! ok_to_go ← false

• Problem was caused by interleaving between the
loop and flag assignment

• IBM 360 Test-and-set instruction

• TS reg, x // reg ← x and x ← 1

• Later architectures: Compare and swap

14

14

Test-and-Set

• Let's paraphrase

•TestSet(flag) yields the value of flag;
it also sets flag ← true

•Atomic operation; can't be interrupted
between copying old value of flag and
setting flag to true.

15

15

Use Test-and-Set

•(Parent initializes busy ← false;)

 while (TestSet(busy)) ;
… Critical Section …
busy ← false;

•Doesn't guarantee bounded waiting

16

16

Use Test-and-Set

x = 10;
busy = false

/* Thread 0 */
while(testSet(busy)) ;

x++;

busy = false;

/* Thread 1 */
while(testSet(busy)) ;

x--;

busy = false;

17

17

Semaphores

18

18

Higher-Level Synchronization
Primitive

• Spin looping $$; yield to OS instead?

• Semaphore primitive (Edsger W. Dijkstra)

• Railroad semaphore flags:
(thanks, Wikipedia).

• When you see the flag,
continue iff it's clear
(raise flag behind you, lower
it when you leave the protected area).

19

19

Binary Semaphore

• A binary semaphore has two states 0 & 1.

• If you want to enter the C.S., wait if the
semaphore is 0.

• If it's 1, decrease it to 0, do your C.S., and
then increase it to 1.

• Increasing the semaphore causes the
waiting thread to be awoken; it can enter
its C.S.

20

20

Counting Semaphore

• Counting semaphore s basically an integer plus
a queue. Once initialized, we can

• s.wait(): atomically,
 if (--s < 0)
 enter queue for s and block.

• s.signal(): atomically,
 ++s; if (queue not empty) remove
 some process from queue and
 awaken it

21

21

Wait, Signal, P, V

• The original names for wait() and signal ()
are P() and V().

• P = prolaag = short for “probeer te verlagen”
is Dutch for “try to reduce”.

• V = verhogen is Dutch for “increase”

• Exist other names (acquire/release, down/up,
suspend/post, …).

22

22

Value of Semaphore

• We don't get to look at value of semaphore
(wouldn't necessarily help anyway).

• If s < 0, then |s| = nbr. processes blocked.

• If s ≥ 0, then s = nbr. waits that can be done
before someone blocks.

• s (if ≥ 0) is nbr. of resources that can be
obtained via wait().

23

23

Mutex via Semaphores

• We can solve the mutex problem using a binary
semaphore:

Semaphore s = 1;

/* Thread 0 */
…
s.wait();
… C.S. …
s.signal();

/* Thread 1 */
…
s.wait();
… C.S. …
s.signal();

24

24

Producer-Consumer Problem

25

25

The Producer-Consumer
Problem

• Archetypical problem in concurrency.

• Two processes and a buffer.

• Producer process repeatedly adds item to
buffer; consumer process repeatedly
removes item from buffer.

• Consumer must wait if buffer is empty;
producer must wait if buffer is full

26

26

Consumer Process

do {
! …
! Wait until buffer not empty;
 Get item from buffer;
 Use item;
! …
while (…);
Use a semaphore to wait until buffer
not empty.

27

27

Consumer

• Parent:
! Semaphore not_empty = 0;
! Buffer buf; // initially empty

• Consumer: (Waits until buffer nonempty)
! ! …
! ! not_empty.wait();
! ! item = buf.get_item();
! ! item.use();
! ! …

28

28

Is buffer Thread-Safe?

• Can buffer routines be interleaved?

• If we try to concurrently/simultaneously
execute buf.get_item() and
buf.add_item(item), can the buffer get
broken?

29

29

If buffer Not Thread-Safe

• If the buffer is not thread-safe, we need a
separate mutex semaphore for the buffer.

• Parent:
! Semaphore not_empty = 0;
! Buffer buf; // initially empty
 semaphore buf_mutex = 0;

30

30

Consumer's buffer mutex

• Consumer:
! ! …
! ! not_empty.wait();

! ! buf_mutex.wait();
! ! item = buf.get_item();
 buf_mutex.signal();

! ! item.use();
! ! …

31

31

What About Producer?

• Producer is symmetric; need a not_full
semaphore initially true

• Parent:
! Semaphore not_empty = 0;
! Semaphore not_full = 1;
! Buffer buf; // initially empty
 semaphore buf_mutex = 0;

32

32

Producer

• Producer: (Waits until buffer not full)
! ! …
 item = …

 not_full.wait();

 buf_mutex.wait();
 buf.add_item();
 buf_mutex.signal();

! ! …

33

33

Producer and Consumer
Unblock Each Other

• Once producer adds an item, it can do
non_empty.signal(); to waken consumer if
necessary.

• Once consumer removes an item, it can do
non_full.signal(); to waken producer if
necessary.

34

34

Full Consumer Code

• Consumer:
! ! …
! ! not_empty.wait();

! ! buf_mutex.wait();
! ! item = buf.get_item();
! ! buf_mutex.signal();

! ! not_full.signal();

! ! item.use();
! ! …

35

35

Full Producer Code

• Producer:
! ! …
 item = …

 not_full.wait();

 buf_mutex.wait();
 buf.add_item(item);
 buf_mutex.signal();

 not_empty.signal();
! ! …

36

36

Observations

• We can have multiple producers and
consumers sharing the same buffer.

• Why are Producer and Consumer so similar?

• Think of the producer as a consumer of
buffer holes.

37

37

Reader-Writer Problem

38

38

The Reader-Writer Problem

• The Reader-Writer problem studies a resource
with different categories of use that have different
exclusion needs.

• Database shared by reader and writer threads.

• Multiple threads can read concurrently.

• Writer threads can't write concurrently.

• If a writer is writing, no reader can read.

• Pedestrian crossing problem (pedestrians vs cars)

39

39

Reader-Writer Solution

• int read_count = 0; // nbr readers

• semaphore RC_mutex = 1;
 // mutex for read_count

• semaphore DB_mutex = 1;
 // mutex for database access

40

40

Writer Process

• Writers are straightforward:

 do {
 DB_mutex.wait();
 … perform write …
 DB_mutex.signal();
} while(…);

41

41

Reader Process

• First reader has to wait for database.

• Other readers wait for first reader to get DB
(by waiting to update read count)

• Each finishing reader decreases read count

• Last finishing reader releases DB.

42

42

 // Reader (embedded in do-while loop)

 RC_mutex.wait();
 ++read_count;
 if (read_count == 1) {
 DB_mutex.wait();
 }
 RC_mutex.signal();

 … read DB …

 RC_mutex.wait();
 --read_count;
 if (read_count == 0) {
 DB_mutex.signal();
 }
 RC_mutex.signal();

43

Updated Feb 12Updated Feb 12

43

