
CS 450: Operating Systems
Lecture 7: Concurrent 

Programming II
Spring 2014, J. Sasaki

Dept of Computer Science
Illinois Institute of Technology

1

1



Amdahl's Law 

2

2



How Much Speedup?

• Matrix multiplication is a rare example of a 
perfectly parallelizable algorithm.

• Even so, with N cores, we don't get N times 
faster results — overhead.

• What about algorithms that aren't perfectly 
parallelizable?

3

3



Best Runtime

• Let S be the fraction of our program that is 
serial-only (not parallelizable); 0 ≤ S ≤ 1.

• So 1 – S is parallelizable.

• If we have N cores, then the best runtime we 
can hope for is S + (1 – S)/N. 

• For perfectly parallelizable program S = 0, 1 – S = 
1, so with N cores our best runtime is 1/N.

4

4



Amdahl's Law

• Our new runtime ≥ S + (1 – S)/N

• Amdahl's law:

Speedup ≤ 1/(S + (1 – S)/N)
• As N → ∞, runtime → S; speedup → 1/S.

• Speedup severely limited by S. Examples:

• S = 20%; speedup ≤ 5

• S = 10%; speedup ≤ 10

5

5



Estimating S

• If Tnew and Told are the new and old runtimes, 
then

• Tnew / Told = S + (1 – S)/N

• So S = (N × Tnew / Told – 1)/(N – 1)

• Matrix multiplication example

• Told = 355.4 ms

• For N = 2, Tnew = 207.3 ms, so S = 17%

• For N = 3, Tnew = 210.7 ms, so S = 39%

6

6



Process Synchronization
(Chapter 5)

7

7



Concurrent Execution and 
Race Conditions

8

8



Concurrent Execution

• Concurrent or parallel execution of 
computation sequences (call them “threads” for 
short):

• Each sequence executes sequentially.

• But the two sequences are interleaved 
nondeterministically.

9

9



Cooperation is Good

• Concurrent/parallel programs need their 
computation sequences to cooperate.

• Communicate data: Messages, shared data

• Synchronize (transfer pgm counter info)

10

10



Cooperation is Hard

• Cooperation is hard because any shared state 
can change nondeterministically.

• What does reading or setting a variable V tell 
you about the value of V ?

• Even if you inspect or update a shared variable, 
you have no idea what its current value is 
unless you know something about the 
programs involved.

11

11



Synchronization

• We might know how do individual threads 
behave in isolation…

• But behavior together can be totally unlike 
behavior in isolation.

• Plus, # potential interaction points is large!

• Synchronization problems are HARD.

12

12



Combining Behaviors

• Example: If x = 10 before thread 0 runs x++ and 
thread 1 runs x-- then what is x afterwards?

• Thread 0: reg0 ← x; reg0++; x ← reg0;

• Thread 1: reg1 ← x; reg1--; x ← reg1; 

• Result depends on sizes of basic operations 
and on their order of interleaving.

13

13



Granularity of Interleaving

• We broke up x++ into
reg0 ← x; reg0++; x ← reg0 
because these (probably) correspond to 
hardware instructions.

• Can hardware instructions be interleaved?

• Can memory accesses be interleaved?

14

14



Thread 0 Thread 1 x reg0 reg1

reg0 ← x; 10 10

reg0++; 10 11

x ← reg0; 11 11

reg1 ← x; 11 11 11

reg1--; 11 11 10

x ← reg1; 10 11 10

A Nice Interleaving

15

15



Thread 0 Thread 1 x reg0 reg1

reg0 ← x; 10 10

reg1 ← x; 10 10 10

reg1--; 10 10 9

x ← reg1; 9 10 9

reg0++; 9 11 9

x ← reg0; 11 11 9

A Less-Nice Interleaving

16

16



Race Condition

• A race condition occurs when the correctness 
of a program depends on the relative speed of 
its threads.

• Avoid race conditions by making sure that all 
allowed execution interleavings produce 
acceptable results.

• Control granularity of interleaving.

• Stop threads when they shouldn't continue.

17

17



Use a Flag to Signal OK to 
Go?

x = 10;
ok_to_go = true;

/* Thread 0 */
while (!ok_to_go) ;
ok_to_go = false;

x++;

ok_to_go = true;

/* Thread 1 */
while (!ok_to_go) ;
ok_to_go = false;

x--;

ok_to_go = true;

18

18



Thread 0 Thread 1 ok_to_go

while (!ok_to_go) ; true

while (!ok_to_go) ; true

ok_to_go = false; false

ok_to_go = false; false

etc etc false

Uh, oh

19

19


