CS 450: Operating Systems
Lecture 6: Concurrent
Programming

—ili——

Spring 2014, J. Sasaki
Dept of Computer Science
lllinois Institute of Technology

Threads and Processes in
Python

Lec06 procsl.py — List of Processes

from multiprocessing import Process
import time
import random

def say hello(id, seconds):
print('Child {} i1s running'.format(id))
time.sleep(seconds)
print('Child {} i1s done'.format(id))

def main(nbr procs = 5):
ps 1s a list of process objects
ps = [Process(target=say hello,
args=([1, random.randint(1,9)]))
for 1 1n range(nbr procs)]

for p in ps:
p.start()
print('Started process {}'.format(p.pid))

for p in ps:
p.Jjoin()
print('Joined process {}'.format(p.pid))

main()

> python3 Lec06 procsl.py
Started process 4074
Started process 4075
Child 0 is running
Started process 4076
Child 1 is running
Started process 4077
Started process 4078

Child 2 is running
Child 3 is running
Child 4 is running
Child 3 is done
Child 4 is done
Child 1 is done
Child 2 is done
Child 0 is done

Joined process 4074
Joined process 4075
Joined process 4076
Joined process 4077
Joined process 4078

Lec06 thds2.py — List of threads

Create a list of threads, start them all,
then join them all

#

from threading import Thread

import time # for sleep

import random

say hello prints its id and sleeps for
a given nbr of seconds
#
def say hello(id, seconds):
print('Child {} is running'.format(id))
time.sleep(seconds)
print('Child {} is done'.format(id))

main(nbr thds) creates a number of threads (default 5)
then it starts all the threads, and then it waits until
they all finish. Each thread sleeps for a random number
of seconds >= 1 and <= 9),
#
def main(nbr thds = 5):

ts is a list of thread objects

ts = [Thread(target=say hello,

args=([1i, random.randint(1,9)1]1))
for i in range(nbr thds)]

for t in ts:
t.start()
print('Started thread {}'.format(t.ident))

for t in ts:
t.join()
print('Joined thread {}'.format(t.ident))

main()

>python3 Lec06_thds2.py

Child

Started

Child

Started

Child

Started

Child

Started

Child

Started

0

1

2

3

4

Child 2

Child
Child
Child
Child
Joined
Joined
Joined
Joined
Joined

O R W b

is running
thread 4318040064
is running
thread 4327477248
is running
thread 4332732416
is running
thread 4337987584
is running
thread 4343242752
is done

is done

is done

is done

is done
thread 4318040064
thread 4327477248
thread 4332732416
thread 4337987584
thread 4343242752

Lec06 _pool3.py — Use pool of processes

from multiprocessing import Pool
import os, random, time

This time, say hello prints out the id and returns
its process id. To make it easier (?) to read the
output, the messages about the child running /
finishing have >'s prepended when we start and <'s
when we finish.

H W H HH

def say hello(id):
print(id*'>"'" + ' Child {} is running'.format(id))
time.sleep(l/random.randint(1,9))
print(id*'<' + ' Child {} is finished'.format(id))
return os.getpid()

Create a number of say hello processes and run them
using the pool of available processes. We print
out a list of the process ids used. Note the number
of distinct process ids = poolsize.

H* H W W H*

def main(poolsize=2, nbr procs=8):
pool = Pool(processes = poolsize);
print (pool.map(say hello, range(nbr procs)))
pool.close() # Start cleanup
pool.join() # Wait for cleanup to finish

main()

10

Child 0 is running

> Child 1 is running

Child 0 is finished

< Child 1 is finished

>> Child 2 is running

>>> Child 3 is running

<< Child 2 is finished

>>>> Child 4 is running

<<< Child 3 1is finished
>>>>> Child 5 is running
<<<< Child 4 is finished
>>>>>> Child 6 1is running
<<<<< Child 5 is finished
>>>>>>> Child 7 i1s running
<<<<<<< Child 7 is finished
<<<<<< Child 6 is finished
[4207, 4208, 4207, 4208, 4207,

4208,

4207,

4208]

11

>>> main(poolsize=5) # More concurrency
Child 0 is running

> Child 1 is running

>> Child 2 is running

>>> Child 3 is running

>>>> Child 4 is running

<< Child 2 is finished

>>>>> Child 5 is running

< Child 1 is finished

>>>>>> Child 6 is running

Child 0 is finished

>>>>>>> Child 7 1s running

<<<< Child 4 is finished

<<< Child 3 is finished

<<<<<< Child 6 is finished

<<<<<<< Child 7 is finished

<<<<< Child 5 is finished

[4222, 4223, 4224, 4225, 4226, 4224, 4223,

4222

12

>>> main(poolsize=5, nbr procs=20) # More procs
Child 0 is running

> Child 1 is running

>> Child 2 is running

>>> Child 3 is running

>>>> Child 4 is running

<<< Child 3 is finished

>>>>> Child 5 is running

<< Child 2 is finished

>>>>>> Child 6 is running

<<<<< Child 5 is finished
>>>>>>> Child 7 is running
Child 0 is finished

< Child 1 is finished

>>>>>>>> Child 8 is running
>>>>>>>>> Child 9 is running
<<<<<<< Child 7 is finished
>>>>>>>>>> Child 10 is running
<<<<<<<< Child 8 is finished
>>>>>>>>>>> Child 11 is running

13

<<<<<< Child 6 is finished

<<<<<K<K<<k< Child 9 is finished
>>>>>>>>>>>> Child 12 is running
>>>>>>>>>>>>> Child 13 is running
<< Child 12 is finished
>>>>>>>>>>>>>> Child 14 is running

<<<< Child 4 is finished

>>>>>>>>>>>>>>> Child 15 is running
<<<<<<K<K<<L<< Child 11 is finished
>>>>>>>>>>>>>>>> Child 16 is running
<< Child 13 is finished
>>>>>>>>>>>>>>>>> Child 17 is running
<< Child 15 is finished
>>>>>>>>>>>>>>>>>> Child 18 is running
<< Child 16 is finished
>>>>>>>>>>>>>>>>>>> Child 19 is running
<< Child 18 is finished
<KL LLLLLLLLL Child 19 is finished
<< Child 17 is finished
<<<<<<<k<<k< Child 10 is finished
<< Child 14 is finished
(4371, 4372, 4373, 4374, 4375, 4374, 4373, 4374, 4371,
4374, 4371, 4373, 4372, 4373, 4375, 4371, 4372, 4375,
>>>

4372,
4371]

14

>>> main(poolsize=20, nbr procs=20) # More concurrency?
Child 0 is running

> Child 1 is running

>> Child 2 is running

>>> Child 3 is running

>>>> Child 4 is running

>>>>> Child 5 is running

>>>>>> Child 6 is running

>>>>>>> Child 7 is running

>>>>>>>> Child 8 is running

>>>>>>>>> Child 9 is running

>>>>>>>>>> Child 10 is running

>>>>>>>>>>> Child 11 is running

>>>>>>>>>>>> Child 12 is running

>>>>>>>>>>>>> Child 13 is running

>>>>>>>>>>>>>> Child 14 is running

>>>>>>>>>>>>>>> Child 15 is running

>>>>>>>>>>>>>>>> Child 16 is running

>>>>>>>>>>>>>>>>> Child 17 is running

>>>>>>>>>>>>>>>>>> Child 18 is running

>>>>>>>>>>>>>>>>>>> Child 19 is running

15

<<<<<<< Child 7 is finished

<<<< Child 4 is finished

<LK Child 19 is finished

<< Child 14 is finished

<<<<< Child 5 is finished

<< Child 11 is finished

<< Child 16 is finished

<<<<K<K<K<K<< Child 9 is finished

<< Child 17 is finished

< Child 1 is finished

<<<<<< Child 6 is finished

<<< Child 3 is finished

<<<<<K<<< Child 8 is finished

<<<<<K<k<<k<k< Child 10 is finished

<< Child 13 is finished

<<<KLLLLLLLLLLLL Child 15 is finished

<< Child 2 is finished

<KL Child 18 is finished
Child 0 is finished

<<<<K<K<K<K<K<K<K<< Child 12 is finished
[4339, 4340, 4341, 4342, 4343, 4344, 4345, 4346, 4347,

4349, 4350, 4351, 4352, 4353, 4354, 4355, 4356, 4357,
>>>

4348,
4358]

16

Concurrent Programming

17

Why Concurrent
Programming?

* Break up program to understand it better

» Avoid blocking whole program ...
to improve resource utilization

e To speed up our programs?
* Run different threads on different CPUs

18

Improving Performance via
Concurrency

o With 1 processor we still might improve
performance using concurrency.

* Run I/0O- and CPU-bound parts of our program
concurrently (less time waste).

» Waiting for different 1/0O devices might be done
concurrently.

* Note concurrency might degrade performance
due to overhead.

19

Improving Performance via
Simultaneous Execution

e Our intuition says the more computations we
do truly in parallel, we sooner we should finish.

» But performance doesn't increase linearly with
the number of processors/cores.

» Also need kernel-supported threads (for
threaded programs)

20

20

Parallelizing Code

e Parallelizing code = Breaking up code into parts
that can be run simultaneously.

o Usually can't break up all the code — there's
some serial part that can't be parallelized.

» Classic example of perfectly parallelizable
code: Matrix Multiplication

21

21

Matrix Multiplication

22

Matrix Multiplication

* First implementation: plain sequential (not
parallel); triply-nested loop

e (Mxn matrix) x (nxp matrix) = (Mxp matrix)
* C[i][i] = 2x=0..n-1 ALi][K] * BIKI[]

« wherei (0 <i<m)isarow number for A
and j (0 <) < p) is a column number for B

23

23

[[7, 71, [[7, 5, 61,
A = L B = [4, 9, 511
[9, 81]

[([77, 98, 77, 77]
27, 50, 31],
(95, 117, 96, 941]]

I
@)
Il

AXB

1x8+5x3 =23

24

24

Lec06 mmu4.py -- Matrix Multiplication

import random
random.seed(0) # for repeatable results

(m, n, p) = (30, 50, 70)

A = [[random.randint(l, 9) for in range(n)] \
for 1n range(m)]

B = [[random.randint(l, 9) for in range(p)] \

for 1n range(n)]

25

25

Sequentially multiply matrix A X B; return
result
#
def seq mat mult():
C = [[0 for col in range(p)] \
for row in range(m)]

for 1 in range(m):
for j in range(p):
for k in range(n):
C[1][J] += A[1i][k] * B[k][]]
return C

26

26

Run sequential multiplications and return time
to completion in ms

#
from time import time
def seq():

start = time()

C_seq = seq mat mult()

end = time()

seq delta = 1000*(end-start)

print(' (SEQ) Elapsed: {:0.1f} ms'.\
format (seqg delta))

return seq delta

Run sequential multiplication nbr trials times
and print average of runtimes
#
def go seq(nbr trials = 5):
times = [seq() for i in range(l, nbr trials)]
average = sum(times)/len(times)
print(' (SEQ) Average of {} runs is {:0.1f} ms'.\
format(nbr trials, average))
return average

27

27

Run sequential multiplication:

> python3 -i Lec06 mm4.py
>>> C = seq mat mult()
>>> C

[[1168, 1411, 1306, ... omitted

>> go_seq()

(SEQ) Elapsed: 40.6 ms
(SEQ) Elapsed: 36.8 ms
(SEQ) Elapsed: 37.2 ms
(SEQ) Elapsed: 38.7 ms

(SEQ) Average of 5 runs 1s 38.3 ms

38.33878040313721
>>>

28

28

Parallel Execution

» For parallel execution, we’ll use a pool of
processes; each process calculates a row of
the result.

e The function mat mult row(r) calculates
row r of the result (0 < r < m).

e The par mat mult () function will use
pool.map to runmat mult row(0), ...,
mat mult row(m-1) and collect the result.

e Size of process pool will affect speed.

29

29

More of Lec06 _mm4.py:

Row r of A (m x n) times B (n x p) = C (m X p)
#
def mat mult row(r): # 0 <= r < m

result = [0 for col in range(p)]

for j in range(p):
for k in range(n):
result[]j] += A[r][k] * B[k][]]
return result

from multiprocessing import Pool

Calculate A times B with the rows of the
result calculated in parallel
#
def par mat mult(poolsize = 2):
pool = Pool(processes = poolsize)
C = pool.map(mat mult row, range(m))
pool.close()
return C

30

30

Run parallel multiplication and return time
to completion in ms
#
def par(poolsize = 2):
start = time()
C_par = par mat mult(poolsize)
end = time()
par delta = 1000* (end-start)
print (' (MAP) Elapsed: {:0.1f} ms'.format(par delta))
return par delta

Run parallel multiplications nbr trials times

and print average of runtimes for this pool size

#

def go par(poolsize = 2, nbr trials = 5):
print (' (MAP) With {} processes'.format(poolsize))
times = [par(poolsize) for i in range(l, nbr trials)]
average = sum(times)/len(times)
print (' (MAP) Average of {} runs is {:0.1f} ms'.\

format (nbr trials, average))

return average

31

31

Run parallel multiplication:

> python3 -1 Lec06 mm4.py
>>> C = par mat mult()
>>> C == seq mat mult()
True

>>> go_par ()

(MAP) With 2 processes
(MAP) Elapsed: 31.6 ms
(MAP) Elapsed: 25.1 ms
(MAP) Elapsed: 35.7 ms
(MAP) Elapsed: 31.7 ms

(

MAP) Average of 5 runs 1s 31.0 ms

31.02630376815796

32

32

Try Different Pool Sizes

e >>> [for 1in map(go par, range(l,10))

(output omitted)

» Results are: 38.3, 28.8, 27.2, 29.4, 31.8, 34.2,
42.5,42.1,42.8 ms

e Pool size 3 is fastest
« Compare with sequential version: 38.5 ms

33

33

