
CS 450: Operating Systems
Lecture 6: Concurrent

Programming
Spring 2014, J. Sasaki

Dept of Computer Science
Illinois Institute of Technology

1

1

Threads and Processes in
Python

2

2

Lec06_procs1.py — List of Processes

from multiprocessing import Process
import time
import random

def say_hello(id, seconds):
! print('Child {} is running'.format(id))
! time.sleep(seconds)
! print('Child {} is done'.format(id))

3

3

def main(nbr_procs = 5):
! # ps is a list of process objects
! ps = [Process(target=say_hello,
! ! ! args=([i, random.randint(1,9)]))
! ! for i in range(nbr_procs)]

! for p in ps:
! ! p.start()
! ! print('Started process {}'.format(p.pid))

! for p in ps:
! ! p.join()
! ! print('Joined process {}'.format(p.pid))

main()

4

4

 > python3 Lec06_procs1.py
Started process 4074
 Started process 4075
 Child 0 is running
 Started process 4076
 Child 1 is running
 Started process 4077
 Started process 4078
 Child 2 is running
 Child 3 is running
 Child 4 is running
 Child 3 is done
 Child 4 is done
 Child 1 is done
 Child 2 is done
 Child 0 is done
 Joined process 4074
 Joined process 4075
 Joined process 4076
 Joined process 4077
 Joined process 4078

5

5

Lec06_thds2.py — List of threads

Create a list of threads, start them all,
then join them all
#
from threading import Thread
import time! # for sleep
import random

say_hello prints its id and sleeps for
a given nbr of seconds
#
def say_hello(id, seconds):
! print('Child {} is running'.format(id))
! time.sleep(seconds)
! print('Child {} is done'.format(id))

6

6

main(nbr_thds) creates a number of threads (default 5)
then it starts all the threads, and then it waits until
they all finish. Each thread sleeps for a random number
of seconds >= 1 and <= 9),
#
def main(nbr_thds = 5):
! # ts is a list of thread objects
! ts = [Thread(target=say_hello,
! ! ! args=([i, random.randint(1,9)]))
! ! for i in range(nbr_thds)]

! for t in ts:
! ! t.start()
! ! print('Started thread {}'.format(t.ident))

! for t in ts:
! ! t.join()
! ! print('Joined thread {}'.format(t.ident))

main()

7

7

>python3 Lec06_thds2.py
Child 0 is running
Started thread 4318040064
Child 1 is running
Started thread 4327477248
Child 2 is running
Started thread 4332732416
Child 3 is running
Started thread 4337987584
Child 4 is running
Started thread 4343242752
Child 2 is done
Child 4 is done
Child 3 is done
Child 1 is done
Child 0 is done
Joined thread 4318040064
Joined thread 4327477248
Joined thread 4332732416
Joined thread 4337987584
Joined thread 4343242752

8

8

Lec06_pool3.py — Use pool of processes

from multiprocessing import Pool
import os, random, time

This time, say hello prints out the id and returns
its process id. To make it easier (?) to read the
output, the messages about the child running /
finishing have >'s prepended when we start and <'s
when we finish.
#
def say_hello(id):
! print(id*'>' + ' Child {} is running'.format(id))
! time.sleep(1/random.randint(1,9))
! print(id*'<' + ' Child {} is finished'.format(id))
! return os.getpid()

9

9

Create a number of say hello processes and run them
using the pool of available processes. We print
out a list of the process ids used. Note the number
of distinct process ids = poolsize.
#
def main(poolsize=2, nbr_procs=8):
! pool = Pool(processes = poolsize);
! print(pool.map(say_hello, range(nbr_procs)))
! pool.close()!! # Start cleanup
! pool.join()! ! # Wait for cleanup to finish

main()

10

10

 Child 0 is running
> Child 1 is running
 Child 0 is finished
< Child 1 is finished
>> Child 2 is running
>>> Child 3 is running
<< Child 2 is finished
>>>> Child 4 is running
<<< Child 3 is finished
>>>>> Child 5 is running
<<<< Child 4 is finished
>>>>>> Child 6 is running
<<<<< Child 5 is finished
>>>>>>> Child 7 is running
<<<<<<< Child 7 is finished
<<<<<< Child 6 is finished
[4207, 4208, 4207, 4208, 4207, 4208, 4207, 4208]

11

11

>>> main(poolsize=5) # More concurrency
 Child 0 is running
> Child 1 is running
>> Child 2 is running
>>> Child 3 is running
>>>> Child 4 is running
<< Child 2 is finished
>>>>> Child 5 is running
< Child 1 is finished
>>>>>> Child 6 is running
 Child 0 is finished
>>>>>>> Child 7 is running
<<<< Child 4 is finished
<<< Child 3 is finished
<<<<<< Child 6 is finished
<<<<<<< Child 7 is finished
<<<<< Child 5 is finished
[4222, 4223, 4224, 4225, 4226, 4224, 4223, 4222]

12

12

>>> main(poolsize=5, nbr_procs=20) # More procs
 Child 0 is running
> Child 1 is running
>> Child 2 is running
>>> Child 3 is running
>>>> Child 4 is running
<<< Child 3 is finished
>>>>> Child 5 is running
<< Child 2 is finished
>>>>>> Child 6 is running
<<<<< Child 5 is finished
>>>>>>> Child 7 is running
 Child 0 is finished
< Child 1 is finished
>>>>>>>> Child 8 is running
>>>>>>>>> Child 9 is running
<<<<<<< Child 7 is finished
>>>>>>>>>> Child 10 is running
<<<<<<<< Child 8 is finished
>>>>>>>>>>> Child 11 is running

13

13

<<<<<< Child 6 is finished
<<<<<<<<< Child 9 is finished
>>>>>>>>>>>> Child 12 is running
>>>>>>>>>>>>> Child 13 is running
<<<<<<<<<<<< Child 12 is finished
>>>>>>>>>>>>>> Child 14 is running
<<<< Child 4 is finished
>>>>>>>>>>>>>>> Child 15 is running
<<<<<<<<<<< Child 11 is finished
>>>>>>>>>>>>>>>> Child 16 is running
<<<<<<<<<<<<< Child 13 is finished
>>>>>>>>>>>>>>>>> Child 17 is running
<<<<<<<<<<<<<<< Child 15 is finished
>>>>>>>>>>>>>>>>>> Child 18 is running
<<<<<<<<<<<<<<<< Child 16 is finished
>>>>>>>>>>>>>>>>>>> Child 19 is running
<<<<<<<<<<<<<<<<<< Child 18 is finished
<<<<<<<<<<<<<<<<<<< Child 19 is finished
<<<<<<<<<<<<<<<<< Child 17 is finished
<<<<<<<<<< Child 10 is finished
<<<<<<<<<<<<<< Child 14 is finished
[4371, 4372, 4373, 4374, 4375, 4374, 4373, 4374, 4371, 4372,
4374, 4371, 4373, 4372, 4373, 4375, 4371, 4372, 4375, 4371]
>>>

14

14

>>> main(poolsize=20, nbr_procs=20) # More concurrency?
 Child 0 is running
> Child 1 is running
>> Child 2 is running
>>> Child 3 is running
>>>> Child 4 is running
>>>>> Child 5 is running
>>>>>> Child 6 is running
>>>>>>> Child 7 is running
>>>>>>>> Child 8 is running
>>>>>>>>> Child 9 is running
>>>>>>>>>> Child 10 is running
>>>>>>>>>>> Child 11 is running
>>>>>>>>>>>> Child 12 is running
>>>>>>>>>>>>> Child 13 is running
>>>>>>>>>>>>>> Child 14 is running
>>>>>>>>>>>>>>> Child 15 is running
>>>>>>>>>>>>>>>> Child 16 is running
>>>>>>>>>>>>>>>>> Child 17 is running
>>>>>>>>>>>>>>>>>> Child 18 is running
>>>>>>>>>>>>>>>>>>> Child 19 is running

15

15

<<<<<<< Child 7 is finished
<<<< Child 4 is finished
<<<<<<<<<<<<<<<<<<< Child 19 is finished
<<<<<<<<<<<<<< Child 14 is finished
<<<<< Child 5 is finished
<<<<<<<<<<< Child 11 is finished
<<<<<<<<<<<<<<<< Child 16 is finished
<<<<<<<<< Child 9 is finished
<<<<<<<<<<<<<<<<< Child 17 is finished
< Child 1 is finished
<<<<<< Child 6 is finished
<<< Child 3 is finished
<<<<<<<< Child 8 is finished
<<<<<<<<<< Child 10 is finished
<<<<<<<<<<<<< Child 13 is finished
<<<<<<<<<<<<<<< Child 15 is finished
<< Child 2 is finished
<<<<<<<<<<<<<<<<<< Child 18 is finished
 Child 0 is finished
<<<<<<<<<<<< Child 12 is finished
[4339, 4340, 4341, 4342, 4343, 4344, 4345, 4346, 4347, 4348,
4349, 4350, 4351, 4352, 4353, 4354, 4355, 4356, 4357, 4358]
>>>

16

16

Concurrent Programming

17

17

Why Concurrent
Programming?

• Break up program to understand it better

• Avoid blocking whole program …
to improve resource utilization

• To speed up our programs?

• Run different threads on different CPUs

18

18

Improving Performance via
Concurrency

• With 1 processor we still might improve
performance using concurrency.

• Run I/O- and CPU-bound parts of our program
concurrently (less time waste).

• Waiting for different I/O devices might be done
concurrently.

• Note concurrency might degrade performance
due to overhead.

19

19

Improving Performance via
Simultaneous Execution

• Our intuition says the more computations we
do truly in parallel, we sooner we should finish.

• But performance doesn't increase linearly with
the number of processors/cores.

• Also need kernel-supported threads (for
threaded programs)

20

20

Parallelizing Code

• Parallelizing code = Breaking up code into parts
that can be run simultaneously.

• Usually can't break up all the code — there's
some serial part that can't be parallelized.

• Classic example of perfectly parallelizable
code: Matrix Multiplication

21

21

Matrix Multiplication

22

22

Matrix Multiplication

• First implementation: plain sequential (not
parallel); triply-nested loop

• (m × n matrix)  ×  (n × p matrix) = (m × p matrix)

• C[i][j] = Σ k = 0…n-1 A[i][k] * B[k][j]

• where i (0 ≤ i < m) is a row number for A
and j (0 ≤ j < p) is a column number for B

23

23

 [[7, 7], [[7, 5, 8, 6],
A = [1, 5], B = [4, 9, 3, 5]]
 [9, 8]]

 [[77, 98, 77, 77]
A×B = C = [27, 50, 23, 31],
 [95, 117, 96, 94]]

1 × 8 + 5 × 3 = 23

24

24

Lec06_mmu4.py -- Matrix Multiplication

import random
random.seed(0) # for repeatable results

(m, n, p) = (30, 50, 70)

A = [[random.randint(1, 9) for _ in range(n)] \
! ! for _ in range(m)]
B = [[random.randint(1, 9) for _ in range(p)] \
! ! for _ in range(n)]

25

25

Sequentially multiply matrix A x B; return
result
#
def seq_mat_mult():
! C = [[0 for col in range(p)] \
! ! for row in range(m)]

! for i in range(m):
! ! for j in range(p):
! ! ! for k in range(n):
! ! ! ! C[i][j] += A[i][k] * B[k][j]
! return C

26

26

Run sequential multiplications and return time
to completion in ms
#
from time import time
def seq():
! start = time()
! C_seq = seq_mat_mult()
! end = time()
! seq_delta = 1000*(end-start)
! print('(SEQ) Elapsed: {:0.1f} ms'.\
! ! format(seq_delta))
! return seq_delta

Run sequential multiplication nbr_trials times
and print average of runtimes
#
def go_seq(nbr_trials = 5):
! times = [seq() for i in range(1, nbr_trials)]
! average = sum(times)/len(times)
! print('(SEQ) Average of {} runs is {:0.1f} ms'.\
! ! format(nbr_trials, average))
! return average

27

27

Run sequential multiplication:

> python3 -i Lec06_mm4.py
>>> C = seq_mat_mult()
>>> C
[[1168, 1411, 1306, ... omitted
>> go_seq()
(SEQ) Elapsed: 40.6 ms
(SEQ) Elapsed: 36.8 ms
(SEQ) Elapsed: 37.2 ms
(SEQ) Elapsed: 38.7 ms
(SEQ) Average of 5 runs is 38.3 ms
38.33878040313721
>>>

28

28

• For parallel execution, we’ll use a pool of
processes; each process calculates a row of
the result.

• The function mat_mult_row(r) calculates
row r of the result (0 ≤ r < m).

• The par_mat_mult() function will use
pool.map to run mat_mult_row(0), …,
mat_mult_row(m-1) and collect the result.

• Size of process pool will affect speed.

29

Parallel Execution

29

More of Lec06_mm4.py:

Row r of A (m x n) times B (n x p) = C (m x p)
#
def mat_mult_row(r): # 0 <= r < m
! result = [0 for col in range(p)]
! for j in range(p):
! ! for k in range(n):
! ! ! result[j] += A[r][k] * B[k][j]
! return result

from multiprocessing import Pool

Calculate A times B with the rows of the
result calculated in parallel
#
def par_mat_mult(poolsize = 2):
! pool = Pool(processes = poolsize)
! C = pool.map(mat_mult_row, range(m))
! pool.close()
! return C

30

30

Run parallel multiplication and return time
to completion in ms
#
def par(poolsize = 2):
! start = time()
! C_par = par_mat_mult(poolsize)
! end = time()
! par_delta = 1000*(end-start)
! print('(MAP) Elapsed: {:0.1f} ms'.format(par_delta))
! return par_delta

Run parallel multiplications nbr_trials times
and print average of runtimes for this pool size
#
def go_par(poolsize = 2, nbr_trials = 5):
! print('(MAP) With {} processes'.format(poolsize))
! times = [par(poolsize) for i in range(1, nbr_trials)]
! average = sum(times)/len(times)
! print('(MAP) Average of {} runs is {:0.1f} ms'.\
! ! format(nbr_trials, average))
! return average

31

31

Run parallel multiplication:

> python3 -i Lec06_mm4.py
>>> C = par_mat_mult()
>>> C == seq_mat_mult()
True
>>> go_par()
(MAP) With 2 processes
(MAP) Elapsed: 31.6 ms
(MAP) Elapsed: 25.1 ms
(MAP) Elapsed: 35.7 ms
(MAP) Elapsed: 31.7 ms
(MAP) Average of 5 runs is 31.0 ms
31.02630376815796

32

32

• >>> [_ for _ in map(go_par, range(1,10))
(output omitted)

• Results are: 38.3, 28.8, 27.2, 29.4, 31.8, 34.2,
42.5, 42.1, 42.8 ms

• Pool size 3 is fastest

• Compare with sequential version: 38.5 ms

33

Try Different Pool Sizes

33

