
CS 450: Operating Systems
Lecture 4: Processes & 

Threads
Spring 2014, J. Sasaki

Dept of Computer Science
Illinois Institute of Technology

1



A Touch of Scheduling

2



Overview of Scheduling

• We'll study scheduling in detail later.

• Multitasking OS changes between tasks to 
increase CPU utilization

• OS updates accounting info regularly

• Cooperative vs preemptive scheduling

• Scheduler selects a ready process to allocate 
CPU

• Ready queue, Waiting queue

3



Process Scheduling

4



Schedulers

• Short-term scheduler/dispatcher quickly 
selects process from ready queue.

• Long-term scheduler aims for a mix of I/O-
bound and CPU-bound ready processes.

• Medium-term scheduling decides which 
processes to swap in/out.

5



Thread Concepts

6



Thread

• A thread is an independent part of a program, 
in execution.

• Play-versus-performance view of process

• Multiple activities on stage.

• Each activity is a thread.

• Share the stage, may interact.

• Threads are individually scheduled.

7



Threads vs Processes

• Process has ≥ 1 thread

• Threads work together to perform the work 
of the process.

• Threads share the resources of their process 
— address space, files

• Thread interaction easy, context switching 
faster

8



Multithreaded Processes

9



Thread Benefits

• Can simplify code by organizing it along 
multiple threads.

• Blocking a thread may still allow other parts of 
a process to continue working.

• Resource sharing across threads can be easier 
than sharing across processes.

• Threaded code may be easier to speed up with 
multiprocessing.

10



Linux Tasks

• Linux 2.4 blurred line between processes and 
threads.

• Linux task that shares code, memory, open 
files, etc. of parent — like a thread.

• Linux task that doesn't share — more like a 
process.

• Tasks get scheduled individually by kernel.

11



Linux Processes

• Linux task creation heavily optimized

• Copy-on-write memory for “unshared” 
address space.

• clone() system call used to create processes 
and threads

• Process creation: clone(min sharing)

• Thread creation: clone(max sharing) 

• (conceptually)

12



Threads in C

13



POSIX C API

• POSIX = Portable OS Interface — IEEE 
standards for cross-OS compatibility.

• Thread creation via pthread_create() 

• Create a thread that executes a function.

• Wait for thread to finish: pthread_join().

• Example: Lec04_thread1.c 

14



#include <pthread.h>
#include <stdio.h>
void *task(void *arg);  // prototype

int main(void) {
! pthread_t thd;! ! // thread
! int retcode;! ! // 0 if thread creation succeeded

! // Create thread and have it run task
! retcode = pthread_create(&thd, NULL, task, NULL);
! printf("Thread creation returned code = %d\n", retcode);

! // Wait for thread to finish
! if (retcode == 0) {
! ! pthread_join(thd, NULL);!
! }
}

15



//  Task run by thread; this one just
// prints a message.
//
void *task(void *arg) {
! printf("Thread called\n");
! return NULL;
}

/* Output:

Thread creation returned code = 0
Thread called

*/

16



Thread Argument

• 4th parameter to pthread_create() is a 
pointer to the thread task's argument.

• Type is a general pointer: void * 

• Thread has to cast pointer to correct type.

• Example: Lec04_thread2.c 

17



#include <pthread.h>
#include <stdio.h>

void *task(void *arg);  // prototype

int main(void) {
! pthread_t thd;! ! // thread
! int retcode;! ! // 0 if thread creation succeeded
! int thd_arg = 17;!// argument to pass to thread

! // Create thread and have it run task; pass pointer to
! // thread argument.
! //
! retcode
      = pthread_create(&thd, NULL, task, (void *) &thd_arg);
! printf("Thread creation returned code = %d\n", retcode);
! printf("Thread argument at %p\n", &thd_arg);

! // Wait for thread to finish
! //
! pthread_join(thd, NULL);
}

18



// Thread task takes pointer to an argument value.
//
void *task(void *arg) {
! int *my_arg_ptr = (int *) arg;
! int my_arg = *my_arg_ptr;
! printf("Thread called with argument %d at %p\n",
   !my_arg, arg );
! return NULL;
}

/* Output:

Thread creation returned code = 0
Thread called with argument 17 at 0x7fff5c89dac8
Thread argument at 0x7fff5c89dac8

*/

// Note: Last two lines could be swapped

19



Thread Result

• 2nd parameter to pthread_join() lets 
thread pass a result to the parent.

• Result itself is a general pointer: void * 

• Pass address of the void * pointer

• Parent has to cast pointer to correct type.

• Example: Lec04_thread3.c 

20



#include <pthread.h>
#include <stdio.h>

void *task(void *arg);  // prototype

int main(void) {
! pthread_t thd;!! // thread
! int retcode;! ! // 0 if thread creation succeeded
! int thd_arg = 17;

! // Create thread and have it run task; pass
! // (pointer to) thread argument
! //
! retcode
      = pthread_create(&thd, NULL, task, (void *) &thd_arg);
! printf("Thread creation returned code = %d\n", retcode);

! int *resultptr;
! pthread_join(thd, (void **) &resultptr);
! printf("result at %p\n", resultptr);
! if (resultptr != NULL) {
! ! printf("result = %d\n", *resultptr);
! }
}

21



int nonlocal; // task will return ptr to this variable
              // task can't return ptr to local variable

// Task returns pointer to its result
//
void *task(void *arg) {
! int my_arg = *(int *) arg;
! printf("Thread called with argument %d\n", my_arg);

! nonlocal = my_arg * 2;
! printf("nonlocal at %p\n", &nonlocal);
! return &nonlocal;
}

/* Output

Thread creation returned code = 0
Thread called with argument 17
nonlocal at 0x100001078
result at 0x100001078

*/

22



23

Threads in Python



• Module threading, class Thread

• Specify thread’s code to run via constructor or 
override run() method. 

• Specify thread name in constructor, retrieve via 
thread.name 

• Call thread.start() to run thread; thread 
is_alive() until run() finishes.

• Call another_thread.join() to wait until the other 
thread terminates.

• threading.current_thread() for the running thread

24

Python Threads



Lec04_thread4.py: Create threads

import threading
from threading import Thread
import time

def main():
! print("Start threads but don't join them\n")
! for i in range(5):
! ! # Create a thread that sleeps for 6-i sec
! ! thd = Thread(target=say_hello, \
! !   args=(6-i,), \
! !   name="mythread_" + str(i) )
! ! thd.start()
! ! print('starting {}'.format(thd.name))
! ! print('{} alive? {}'\
! !   .format(thd.name, thd.is_alive()) )

25



def say_hello(sleep_seconds):
! myname = threading.current_thread().name
! print('hello from {}'.format(myname))
! time.sleep(sleep_seconds)
! print('goodbye from {}'.format(myname))

main()! # run the main program

26



Sample output (Note order the threads finish)

hello from mythread_0
starting mythread_0
mythread_0 alive? True
hello from mythread_1
starting mythread_1
mythread_1 alive? True
hello from mythread_2
starting mythread_2
mythread_2 alive? True
hello from mythread_3
starting mythread_3
mythread_3 alive? True
hello from mythread_4
starting mythread_4
mythread_4 alive? True
goodbye from mythread_4
goodbye from mythread_3
goodbye from mythread_2
goodbye from mythread_1
goodbye from mythread_0

27



Lec04_thread5.py: Create & join threads

import threading
import time
from threading import Thread

def main():
! print("Start then join each thread\n")
! for i in range(5):
! ! # Create a thread that sleeps for 6-i sec
! ! thd = Thread(target=say_hello, \
! !   args=(6-i,), \
! !   name="mythread_" + str(i))
! ! thd.start()
! ! print('starting {}'.format(thd.name))
! ! thd.join()

28



def say_hello(sleep_seconds):
! myname = threading.current_thread().name
! print('hello from {}'.format(myname))
! time.sleep(sleep_seconds)
! print('goodbye from {}'.format(myname))

main()!# run the main program

29



Sample output (Note order the threads finish)

hello from mythread_0
starting mythread_0
goodbye from mythread_0
hello from mythread_1
starting mythread_1
goodbye from mythread_1
hello from mythread_2
starting mythread_2
goodbye from mythread_2
hello from mythread_3
starting mythread_3
goodbye from mythread_3
hello from mythread_4
starting mythread_4
goodbye from mythread_4

30



Sample output:

hello from mythread_0
starting mythread_0
goodbye from mythread_0
hello from mythread_1
starting mythread_1
goodbye from mythread_1
hello from mythread_2
starting mythread_2
goodbye from mythread_2
hello from mythread_3
starting mythread_3
goodbye from mythread_3
hello from mythread_4
starting mythread_4
goodbye from mythread_4

31


