
Simple Concurrent Programming
CS 450: Operating Systems

Due Mon Feb 24

Programming Problem [25 points]
Introduction
For this assignment, implement the Sieve of Eratosthenes using a pool of
processes in Python, use test runs to see how quickly the program runs under
different combinations of parameters, and write a short description of your
results along with possible explanations for why the results came out that way.

The Sieve of Eratosthenes

 The sieve is a simple way to find prime numbers that involves taking a list of
integers and throwing away ones that are multiples. We start with an array
sieve with sieve[0] and sieve[1] false and sieve[2..n-1] all true (where n is
the length of the sieve). For each k = 2, 3, …, n/2, set sieve[m*k] false for all m
≥ 2 (and m*k < n, of course). When you’re done, sieve[p] is true iff p is prime.
Calculate a list of those p; that’s the list of primes < n.
	 For the python version of the program, write a python3 program that
declares a sieve array as a global variable and initializes it using
multiprocessing.sharedctypes.RawArray (see the discussion below).
The main() routine should run the sieve algorithm, return a list of prime numbers,
and print out the time it took to calculate the sieve, in ms.

 The main() routine should have keyword arguments poolsize (for the pool
size to use) and chunksize (see below). To explain the chunk size, imagine a
do_sieve(k) routine that removes all multiples of k from the sieve (but if k ≤ 1, it
just removes k). To process the sieve, we’d need to run do_sieve on k = 0, 1, …,
size of sieve - 1. Now imagine extending this routine to take k and chunksize
and having it remove all multiples of k, k+1, k+2, …, k+chunksize-1. To
process the entire sieve, we will run this routine with starting k values of 0,
chunksize, 2*chunksize, and so on. These runs will be in parallel. A
chunksize of 1 creates as many processes as possible to process the sieve; a
chunksize equal to the sieve size is a sequentially-running sieve.

Using Shared Ctype Data

 The matrix multiplication routine from lecture doesn’t have to share the
results of the parallel computations between different processes. The top-level
routine runs the parallel routines and collects the results.

Illinois Institute of Technology	 	 HW 2

CS 450: Operating Systems
 – 1 –
 © James Sasaki, 2014

 For the sieve algorithm, we do have to share the sieve array among all the
parallel sieving calls, since the final sieve array is the result of striking out all
multiples of 2 and all multiples of 3 and so on. For the processes to share the
sieve array, it must be global, as in the matrix multiplication program, but the we
need multiprocessing.sharedctypes.RawArray to create the array. If
you read the Python documentation on this class (and obviously, you should),
you’ll find that the values produced by this class are shared across processes.
The smallest unit of array data you can use are signed and unsigned characters.
You’ll need to pick one of these types and decide on values you want to use to
represent true and false.

The Experiments

 Once you get your program working on whatever machine you use, move
the program to alpha.cs.iit.edu and run some experiments to see what
runtimes you get for a sieve of length 100,000 under the combinations of
chunksize = 1, 10, 100, 1000, 10,000, 100,000 and pool size = 1, 2, …, 20. (Me
personally, I found each run typically took less than a quarter second.) We
should be able to call main(poolsize = nnn, chunksize = nnn) to run your
program for some combination of pool and chunk sizes.
	 Write up a short document (at most 3 pages) that presents your timing
results. What combination of pool size and chunk size was generally fastest?
Explain briefly why smaller and larger (if any) sizes caused slower runs.

What to Submit and How
	 Please create a folder with your name and id, put your source file and
writeup pdf into it, zip the folder, and submit the zip file to Blackboard. Include
your name and ID in the source file and your writeup. Please include your name
and ID in the name of the submission.

Grading
	 The program is worth 20 points; the writeup is worth 5. If your program has
syntax errors when load it in (using python3), it gets 0 points. Program
correctness is worth 15 points; program readability is worth 5 points.

 Don’t feel that you have to seriously over-comment your program, but it’s a
good idea to say something about each function you write, and if you do
something subtle with the code, please explain it. The basic idea is that the
easier it is for your TA to understand the program, the more points you’ll earn.

Illinois Institute of Technology	 	 HW 2

CS 450: Operating Systems
 – 2 –
 © James Sasaki, 2014

