Peter Chinetti

CS 440

1 LL Grammars

- Common Prefix and Left Recursion.
- Eliminate Left Recursion:
- Productions of the form $S \rightarrow \beta$ become $S \rightarrow \beta S^{\prime}$
- Productions of the form $S \rightarrow S \alpha$ become $S^{\prime} \rightarrow \alpha S^{\prime}$
- Add $S \rightarrow \epsilon$
- Eliminate Mutual Recursion:
- Take the first Symbol and eliminate left recursion
- Take the second symbol and substitue left recursions of A, then eliminate left recursions of B
- Take the third symbol and substitute left recursions of A and B, then eliminate left recursions of C
- ...
- Got it.

2 Prolog

- Prolog operators can only return true or false, and operate via unification with backtracking.

```
sum([],0).
sum([H|T],X) :- sum(T,Y), X is Y + H.
append([],X,X)
append ([H|T],X,[H|Z]) :- append (T,X,Z)
```

```
flatten([],[]).
flatten([H|A],[H|A]) :- flatten(A,B).
flatten([L|A],Z) :- is_list(L), !, append(L,A,X), flatten(X,Z).
isprefix([],X)
isprefix([H|T],[H|Z]) :- isprefix(T,Z)
```

- All queries in Prolog are attempted to be solved via unification.

3 Prolog Cut

- The cut operator stops backtracking.
- Got it.
- Got it.

4 Unification

- Got it.
- Haskell's type checker, prolog.

5 Grammars

- a
- An ambiguous grammar is a grammar which an parse an input into two or more trees.

6 Operational Semantics

- Got it.
- Given an expression with two different evaluation paths, both paths will evaluate to the same value.

